Recent advances and prospects of electrolyte for aluminum ion batteries
FANG Liang,1, ZHANG Kai,2, ZHOU Limin,3,4
1.School of Energy and Materials Engineering, Dongguk University, Seoul 04620, South Korea
2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), School of Chemistry, Nankai University, Tianjin 300071, China
3.School of Materials Science and Engineering, Korea University, Seoul 02841, South Korea
4.College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
Benefitting from high gravimetric/volumetric energy density, low cost, and high safety of aluminum anode, rechargeable aluminum ion batteries (AIBs) have become promising next-generation energy-storage battery system. AIBs are comprised of Al anode, cathode materials, and 1-ethyl-3-methylimidazole chloride ([EMIm]Cl)-based ionic liquid electrolyte. Currently, significant progresses have been made in the performance optimization of Al-storage cathodes; however, the practical application of AIBs is limited by electrolyte problems, including high cost, corrosivity, humidity sensitivity, and unstable interface. This review summarizes recent works on AIB electrolyte and the tactics to improve the practicability of AIB electrolyte. From the perspective of cost reduction, modify and optimize the property of low-cost ionic liquid electrolyte and low-temperature molten salt system. In the viewpoint of chemical stability, develop new-type electrolyte systems, such as gel polymer and solid-state electrolyte, which aim at protecting ionic liquids with solid substrate. Exploring low-cost and chemically/electrochemically stable electrolyte is an attractive direction in the field of AIBs. In addition, the modification schemes and existing problems of different electrolytes are comprehensively analyzed and discussed, and the future development of AIB electrolyte is prospected.
Keywords:aluminum ion batteries
;
electrolyte
;
ionic liquid
;
gel polymer
;
low cost
离子液体类似物,通常也称为深共晶溶剂,是由强Lewis酸性金属卤化物和Lewis碱性配体混合而成。由于离子液体具有优异的电化学和物理性质,且环境污染小,受到了研究者们的青睐。不同于锂离子电池中锂离子作为电荷转移载体,铝离子电池所用的离子液体电解液是由AlCl3和酰胺配体(尿素或乙酰胺等)衍生的,体系中的离子是通过AlCl3(Al2Cl6单元)的异裂作用生成AlCl4-阴离子和[AlCl2·(配体) n ]+阳离子,后者贡献还原性铝的沉积。常见离子液体电解液的制备是将氯化铝粉末(99.99%)缓慢加入氯化-1-乙基-3-甲基咪唑盐([EMIm]Cl)(98%)中,二者的摩尔质量比为1.3[10]。室温下,该离子液体通过酸碱中和反应生成AlCl4-,既作为电解质,又作为客体离子的来源。以石墨作为储铝正极为例[10],在充放电过程中,负极一侧的AlCl4-与铝离子反应生成Al2Cl7-以及放电过程中的电子。正极一侧的AlCl4-在石墨层之间进行嵌入。放电时,Al2Cl7-阴离子在电极/电解液界面进行解离生成AlCl4-与铝离子。同时,AlCl4-从石墨层间脱出。
Fig. 3
(a) Galvanostatic charge/discharge curve of AlIIgraphite cells using AlCl3/urea mole ratio 1.3 electrolyte at 20th cycle and 100 mA/g; (b) cycling stability test until 180 cycles at 100 mA/g within a voltage window of 2.2~1 V after current density changes[18]; (c) long cycling performance of AlIITPB battery with AlCl3/urea/[EMIm]Cl as electrolyte at 100 mA/g[19]; (d) charge/discharge curves of Al-S batteries with MWCNT/S cathode and AlCl3/urea electrolyte at 100 mA/g[20]
Fig. 4
(a) Comparison of power density and energy density of AlIIgraphite battery using AlCl3/Et3NHCl as electrolyte with reported aluminum ion batteries[22]; (b) galvanostatic cycling test at 500 mA/g of AlIIgraphene nanosheet battery using AlCl3/TMAHCl as electrolyte in temperature range of -10 to 60 ℃[23]; (c) the relationship between addition ratio (volume) of benzene in ionic liquid and concentration and ionic conductivity of corresponding ionic liquid electrolyte[24]
除了成本问题外,离子液体也面临着湿度敏感性以及腐蚀性的问题。Wu课题组[26]将1-丁基-3-甲基咪唑三氟甲基磺酸酯([BMIM]OTF)与相应的铝盐[Al(OTF)3,图2(e)]混合得到非腐蚀性和水稳定性的离子液体。这种离子液体电解液具有高的氧化电压(3.25 V vs. Al3+/Al)和较高的离子电导率。与V2O5纳米线正极组装,得到的铝离子电池获得了良好的电化学性能。利用腐蚀性AlCl3基电解液在铝负极为Al3+传输构筑合适的通道,然后采用非腐蚀性Al(OTF)3基电解液来获得稳定的Al/电解液界面,该策略能将非活性材料转化为高活性材料用于二次电池中。
Fig. 5
(a) Ionic conductivity of AlCl3/NaCl electrolyte at different temperatures; (b) charge/discharge curves at different cycle cycles of aluminum ion battery based on AlCl3/NaCl electrolyte at a current density of 500 mA/g[27]; (c) electrochemical performance of aluminum ion battery at different temperatures based on ternary AlCl3/LiCl/KCl inorganic molten salt at 200 mA/g[28]
Fig. 6
(a) Comparison of electrode-electrolyte interface and gas production between liquid and solid aluminum ion batteries; (b) charge/discharge curves of solid-state batteries at different current densities[30]; (c) relationship of ionic conductivity and temperature for polyacrylamide-based gel electrolytes containing different amounts of [EMIm]Cl-AlCl3[34]
SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071.
ZHANG Q F, CHENG X L, WANG C X, et al. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries[J]. Energy & Environmental Science, 2021, 14(2): 965-974.
FANG L, ZHOU L M, CUI L M, et al. Sulfur-linked carbonyl polymer as a robust organic cathode for rapid and durable aluminum batteries[J]. Journal of Energy Chemistry, 2021, 63: 320-327.
TU J G, SONG W L, LEI H P, et al. Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives[J]. Chemical Reviews, 2021, 121(8): 4903-4961.
ELIA G A, MARQUARDT K, HOEPPNER K, et al. An overview and future perspectives of aluminum batteries[J]. Advanced Materials, 2016, 28(35): 7564-7579.
ZHOU J W, YU X Z, ZHOU J, et al. Polyimide/metal-organic framework hybrid for high performance Al-organic battery[J]. Energy Storage Materials, 2020, 31: 58-63.
ZHOU L M, ZHANG Z H, CUI L M, et al. High-capacity and small-polarization aluminum organic batteries based on sustainable quinone-based cathodes with Al3+ insertion[J]. Cell Reports Physical Science, 2021, 2(3): doi: 10.1016/j.xcrp.2021.100354.
TAN B, DONG R L, PENG H, et al. Research progress and prospect of cathode materials for aluminum ion batteries[J]. Materials Science, 2020, 10(3): 173-178.
WANG S, YU Z J, TU J G, et al. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene[J]. Advanced Energy Materials, 2016, 6(13): doi: 10.1002/aenm.201600137.
LIU Z M, WANG J, JIA X X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano, 2019, 13(9): 10631-10642.
ZHANG Q F, WANG L L, WANG J, et al. Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries[J]. Energy Storage Materials, 2018, 15: 361-367.
ZHANG E J, WANG B, WANG J, et al. Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries[J]. Chemical Engineering Journal, 2020, 389: doi: 10.1016/j.cej.2020.124407.
ZHANG E J, WANG J, WANG B, et al. Unzipped carbon nanotubes for aluminum battery[J]. Energy Storage Materials, 2019, 23: 72-78.
ANGELL M, PAN C J, RONG Y M, et al. High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte[J]. PNAS, 2017, 114(5): 834-839.
KAO Y T, PATIL S B, AN C Y, et al. A quinone-based electrode for high-performance rechargeable aluminum-ion batteries with a low-cost AlCl3/urea ionic liquid electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25853-25860.
BIAN Y H, LI Y, YU Z C, et al. Using an AlCl3/urea ionic liquid analog electrolyte for improving the lifetime of aluminum-sulfur batteries[J]. ChemElectroChem, 2018, 5(23): 3607-3611.
XU C, ZHANG W Y, LI P, et al. High-performance aluminum-ion batteries based on AlCl3/caprolactam electrolytes[J]. Sustainable Energy & Fuels, 2020, 4(1): 121-127.
XU H Y, BAI T W, CHEN H, et al. Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery[J]. Energy Storage Materials, 2019, 17: 38-45.
PARK Y, LEE D B, KIM J, et al. Fast charging with high capacity for aluminum rechargeable batteries using organic additive in an ionic liquid electrolyte[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(47): 27525-27528.
XU C, ZHAO S M, DU Y Q, et al. AlCl3/pyridinium chloride electrolyte-based rechargeable aluminum ion battery[J]. Materials Letters, 2020, 275: doi: 10.1016/j.matlet.2020.128040.
WANG H L, GU S C, BAI Y, et al. High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27444-27448.
SONG Y, JIAO S Q, TU J G, et al. A long-life rechargeable Al ion battery based on molten salts[J]. Journal of Materials Chemistry A, 2017, 5(3): 1282-1291.
WANG J, ZHANG X, CHU W Q, et al. A sub-100 ℃ aluminum ion battery based on a ternary inorganic molten salt[J]. Chemical Communications, 2019, 55(15): 2138-2141.
TU J G, WANG S B, LI S J, et al. The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte[J]. Journal of the Electrochemical Society, 2017, 164(13): A3292-A3302.
YU Z J, JIAO S Q, LI S J, et al. Flexible stable solid-state Al-ion batteries[J]. Advanced Functional Materials, 2019, 29(1): doi: 10.1002/adfm.201806799.
RAGHAVAN P, MANUEL J, ZHAO X H, et al. Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries[J]. Journal of Power Sources, 2011, 196(16): 6742-6749.
KIM J R, CHOI S W, JO S M, et al. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries[J]. Electrochimica Acta, 2004, 50(1): 69-75.
WANG S H, HOU S S, KUO P L, et al. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(17): 8477-8485.
SUN X G, FANG Y X, JIANG X G, et al. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries[J]. Chemical Communications, 2016, 52(2): 292-295.
... 离子液体类似物,通常也称为深共晶溶剂,是由强Lewis酸性金属卤化物和Lewis碱性配体混合而成.由于离子液体具有优异的电化学和物理性质,且环境污染小,受到了研究者们的青睐.不同于锂离子电池中锂离子作为电荷转移载体,铝离子电池所用的离子液体电解液是由AlCl3和酰胺配体(尿素或乙酰胺等)衍生的,体系中的离子是通过AlCl3(Al2Cl6单元)的异裂作用生成AlCl4-阴离子和[AlCl2·(配体) n ]+阳离子,后者贡献还原性铝的沉积.常见离子液体电解液的制备是将氯化铝粉末(99.99%)缓慢加入氯化-1-乙基-3-甲基咪唑盐([EMIm]Cl)(98%)中,二者的摩尔质量比为1.3[10].室温下,该离子液体通过酸碱中和反应生成AlCl4-,既作为电解质,又作为客体离子的来源.以石墨作为储铝正极为例[10],在充放电过程中,负极一侧的AlCl4-与铝离子反应生成Al2Cl7-以及放电过程中的电子.正极一侧的AlCl4-在石墨层之间进行嵌入.放电时,Al2Cl7-阴离子在电极/电解液界面进行解离生成AlCl4-与铝离子.同时,AlCl4-从石墨层间脱出. ...
... 大多数情况下,离子液体电解液的制备成本都很高,发展廉价、高性能的铝沉积溶解电解液是铝离子电池实现商业化的前提.离子液体通常是由强路易斯酸性金属卤化物和路易斯碱性配体混合而成.由AlCl3和尿素[图2(b)]以1.3∶1的摩尔比混合得到的离子液体类似物电解液,价格仅为[EMIm]Cl/AlCl3的1/50,且更环保[18].该电解液应用在AlII石墨电池中,呈现出1.9 V和1.5 V的放电电压平台(平均放电电压1.73 V)[图3(a)].在电流密度100 mA/g下表现出73 mA·h/g的正极比容量,180圈的循环内保持>99%的库仑效率[图3(b)].拉曼测试和核磁表征得到,AlCl3/尿素电解液中(AlCl3过量)存在AlCl4-、Al2Cl7-和[AlCl2·(尿素) n ]+三种离子.其中,铝沉积是通过两条途径进行,包括Al2Cl7-阴离子和[AlCl2·(尿素) n ]+阳离子.该电解液为高性能、低成本的铝离子电池探究提供了新思路.由于AlCl3/尿素作为铝离子电池电解液具有较高的黏度和较低的导电性/离子性,使得电池体系的倍率容量明显低于基于[EMIm]Cl基的电池系统,需要进一步改进.为了提升电解液的电导率,在该体系中引入少量[EMIm]Cl.当2,3,5,6-四酞氨基-1,4-苯醌(TPB)作为储铝正极时[19],采用该尿素电解液组装的AlIITPB电池在250圈循环之后仍有高达175 mA·h/g的容量[图3(c)].另外,在AlCl3/尿素电解液基础上,加入己内酰胺(CPL)能够明显提高铝离子电池的截止电压和初始放电电压[21].在5 A/g的电流密度下,商业化的石墨在该AlCl3/尿素/CPL电解液中展现出151 mA·h/g的比容量,3000次循环后仍保持132 mA·h/g的容量与98%的库仑效率. ...
... [18];(c) 在电流密度100 mA/g,以AlCl3/尿素/[EMIm]Cl为电解液的AlIITPB电池250圈的长循环性能[19];(d) 在电流密度100 mA/g,以MWCNT/S为正极和AlCl3/尿素为电解液的Al-S电池在不同圈数的充放电曲线[20](a) Galvanostatic charge/discharge curve of AlIIgraphite cells using AlCl3/urea mole ratio 1.3 electrolyte at 20th cycle and 100 mA/g; (b) cycling stability test until 180 cycles at 100 mA/g within a voltage window of 2.2~1 V after current density changes[18]; (c) long cycling performance of AlIITPB battery with AlCl3/urea/[EMIm]Cl as electrolyte at 100 mA/g[19]; (d) charge/discharge curves of Al-S batteries with MWCNT/S cathode and AlCl3/urea electrolyte at 100 mA/g[20]Fig. 3
... [18]; (c) long cycling performance of AlIITPB battery with AlCl3/urea/[EMIm]Cl as electrolyte at 100 mA/g[19]; (d) charge/discharge curves of Al-S batteries with MWCNT/S cathode and AlCl3/urea electrolyte at 100 mA/g[20]Fig. 3
... 大多数情况下,离子液体电解液的制备成本都很高,发展廉价、高性能的铝沉积溶解电解液是铝离子电池实现商业化的前提.离子液体通常是由强路易斯酸性金属卤化物和路易斯碱性配体混合而成.由AlCl3和尿素[图2(b)]以1.3∶1的摩尔比混合得到的离子液体类似物电解液,价格仅为[EMIm]Cl/AlCl3的1/50,且更环保[18].该电解液应用在AlII石墨电池中,呈现出1.9 V和1.5 V的放电电压平台(平均放电电压1.73 V)[图3(a)].在电流密度100 mA/g下表现出73 mA·h/g的正极比容量,180圈的循环内保持>99%的库仑效率[图3(b)].拉曼测试和核磁表征得到,AlCl3/尿素电解液中(AlCl3过量)存在AlCl4-、Al2Cl7-和[AlCl2·(尿素) n ]+三种离子.其中,铝沉积是通过两条途径进行,包括Al2Cl7-阴离子和[AlCl2·(尿素) n ]+阳离子.该电解液为高性能、低成本的铝离子电池探究提供了新思路.由于AlCl3/尿素作为铝离子电池电解液具有较高的黏度和较低的导电性/离子性,使得电池体系的倍率容量明显低于基于[EMIm]Cl基的电池系统,需要进一步改进.为了提升电解液的电导率,在该体系中引入少量[EMIm]Cl.当2,3,5,6-四酞氨基-1,4-苯醌(TPB)作为储铝正极时[19],采用该尿素电解液组装的AlIITPB电池在250圈循环之后仍有高达175 mA·h/g的容量[图3(c)].另外,在AlCl3/尿素电解液基础上,加入己内酰胺(CPL)能够明显提高铝离子电池的截止电压和初始放电电压[21].在5 A/g的电流密度下,商业化的石墨在该AlCl3/尿素/CPL电解液中展现出151 mA·h/g的比容量,3000次循环后仍保持132 mA·h/g的容量与98%的库仑效率. ...
... [19];(d) 在电流密度100 mA/g,以MWCNT/S为正极和AlCl3/尿素为电解液的Al-S电池在不同圈数的充放电曲线[20](a) Galvanostatic charge/discharge curve of AlIIgraphite cells using AlCl3/urea mole ratio 1.3 electrolyte at 20th cycle and 100 mA/g; (b) cycling stability test until 180 cycles at 100 mA/g within a voltage window of 2.2~1 V after current density changes[18]; (c) long cycling performance of AlIITPB battery with AlCl3/urea/[EMIm]Cl as electrolyte at 100 mA/g[19]; (d) charge/discharge curves of Al-S batteries with MWCNT/S cathode and AlCl3/urea electrolyte at 100 mA/g[20]Fig. 3
(a) Galvanostatic charge/discharge curve of AlIIgraphite cells using AlCl3/urea mole ratio 1.3 electrolyte at 20th cycle and 100 mA/g; (b) cycling stability test until 180 cycles at 100 mA/g within a voltage window of 2.2~1 V after current density changes[18]; (c) long cycling performance of AlIITPB battery with AlCl3/urea/[EMIm]Cl as electrolyte at 100 mA/g[19]; (d) charge/discharge curves of Al-S batteries with MWCNT/S cathode and AlCl3/urea electrolyte at 100 mA/g[20]Fig. 3
... [22];(b) AlCl3/TMAHCl作为电解液,AlII石墨烯纳米片电池在500 mA/g,温度范围为-10~60 ℃之间的恒电流循环[23];(c) 苯在离子液体中的添加比(体积比)与对应离子液体电解液的浓度和离子电导率的关系[24](a) Comparison of power density and energy density of AlIIgraphite battery using AlCl3/Et3NHCl as electrolyte with reported aluminum ion batteries[22]; (b) galvanostatic cycling test at 500 mA/g of AlIIgraphene nanosheet battery using AlCl3/TMAHCl as electrolyte in temperature range of -10 to 60 ℃[23]; (c) the relationship between addition ratio (volume) of benzene in ionic liquid and concentration and ionic conductivity of corresponding ionic liquid electrolyte[24]Fig. 4
... [22]; (b) galvanostatic cycling test at 500 mA/g of AlIIgraphene nanosheet battery using AlCl3/TMAHCl as electrolyte in temperature range of -10 to 60 ℃[23]; (c) the relationship between addition ratio (volume) of benzene in ionic liquid and concentration and ionic conductivity of corresponding ionic liquid electrolyte[24]Fig. 4
... [23];(c) 苯在离子液体中的添加比(体积比)与对应离子液体电解液的浓度和离子电导率的关系[24](a) Comparison of power density and energy density of AlIIgraphite battery using AlCl3/Et3NHCl as electrolyte with reported aluminum ion batteries[22]; (b) galvanostatic cycling test at 500 mA/g of AlIIgraphene nanosheet battery using AlCl3/TMAHCl as electrolyte in temperature range of -10 to 60 ℃[23]; (c) the relationship between addition ratio (volume) of benzene in ionic liquid and concentration and ionic conductivity of corresponding ionic liquid electrolyte[24]Fig. 4
... [23]; (c) the relationship between addition ratio (volume) of benzene in ionic liquid and concentration and ionic conductivity of corresponding ionic liquid electrolyte[24]Fig. 4
(a) Comparison of power density and energy density of AlIIgraphite battery using AlCl3/Et3NHCl as electrolyte with reported aluminum ion batteries[22]; (b) galvanostatic cycling test at 500 mA/g of AlIIgraphene nanosheet battery using AlCl3/TMAHCl as electrolyte in temperature range of -10 to 60 ℃[23]; (c) the relationship between addition ratio (volume) of benzene in ionic liquid and concentration and ionic conductivity of corresponding ionic liquid electrolyte[24]Fig. 4
... 除了成本问题外,离子液体也面临着湿度敏感性以及腐蚀性的问题.Wu课题组[26]将1-丁基-3-甲基咪唑三氟甲基磺酸酯([BMIM]OTF)与相应的铝盐[Al(OTF)3,图2(e)]混合得到非腐蚀性和水稳定性的离子液体.这种离子液体电解液具有高的氧化电压(3.25 V vs. Al3+/Al)和较高的离子电导率.与V2O5纳米线正极组装,得到的铝离子电池获得了良好的电化学性能.利用腐蚀性AlCl3基电解液在铝负极为Al3+传输构筑合适的通道,然后采用非腐蚀性Al(OTF)3基电解液来获得稳定的Al/电解液界面,该策略能将非活性材料转化为高活性材料用于二次电池中. ...
... [27];(c) 在200 mA/g电流密度下,基于三元AlCl3/LiCl/KCl无机熔融盐的铝离子电池在不同温度的储铝性能[28](a) Ionic conductivity of AlCl3/NaCl electrolyte at different temperatures; (b) charge/discharge curves at different cycle cycles of aluminum ion battery based on AlCl3/NaCl electrolyte at a current density of 500 mA/g[27]; (c) electrochemical performance of aluminum ion battery at different temperatures based on ternary AlCl3/LiCl/KCl inorganic molten salt at 200 mA/g[28]Fig. 52.3 聚合物电解质
... [27]; (c) electrochemical performance of aluminum ion battery at different temperatures based on ternary AlCl3/LiCl/KCl inorganic molten salt at 200 mA/g[28]Fig. 52.3 聚合物电解质
... [28](a) Ionic conductivity of AlCl3/NaCl electrolyte at different temperatures; (b) charge/discharge curves at different cycle cycles of aluminum ion battery based on AlCl3/NaCl electrolyte at a current density of 500 mA/g[27]; (c) electrochemical performance of aluminum ion battery at different temperatures based on ternary AlCl3/LiCl/KCl inorganic molten salt at 200 mA/g[28]Fig. 52.3 聚合物电解质
... [30];(c) 含有不同量[EMIm]Cl-AlCl3 的聚丙烯酰胺基聚合物凝胶电解质的离子电导率与温度的关系[34](a) Comparison of electrode-electrolyte interface and gas production between liquid and solid aluminum ion batteries; (b) charge/discharge curves of solid-state batteries at different current densities[30]; (c) relationship of ionic conductivity and temperature for polyacrylamide-based gel electrolytes containing different amounts of [EMIm]Cl-AlCl3[34]Fig. 6
... [30]; (c) relationship of ionic conductivity and temperature for polyacrylamide-based gel electrolytes containing different amounts of [EMIm]Cl-AlCl3[34]Fig. 6
... [34](a) Comparison of electrode-electrolyte interface and gas production between liquid and solid aluminum ion batteries; (b) charge/discharge curves of solid-state batteries at different current densities[30]; (c) relationship of ionic conductivity and temperature for polyacrylamide-based gel electrolytes containing different amounts of [EMIm]Cl-AlCl3[34]Fig. 6