该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2022年10月1日至2022年11月30日上线的锂电池研究论文,共有3301篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元和尖晶石镍锰酸锂的表面改性和体相掺杂,及其在长循环过程中或高电压下所发生的表面和体相的结构演变。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用。金属锂负极的研究包含金属锂的表面修饰和无负极金属锂电池。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注正极中离子、电子传输能力的提升。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。测试技术涵盖了锂沉积和硅负极演化等方面。电池工艺相关的研究工作侧重于电极极片制作和浆料的特性。
关键词:锂电池
;
正极材料
;
负极材料
;
固体电解质
;
电池技术
Abstract
This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 3301 papers online from Oct. 1, 2022 to Nov. 30, 2022. 100 of them were selected to be highlighted. High-nickel ternary layered and LNMO spinel cathode materials are still under extensive investigations of the influences of doping and interface modifications on their electrochemical performances and surface and bulk evolution of structures under prolong cycling. For alloying mechanism anode materials, such as silicon-based composite materials, many researchers pay attention to material preparation and optimization of electrode structure to buffer volume changes, and emphasize the application of functional binders. Large efforts were devoted to design the three-dimensional structure electrode, interface modification, and inhomogeneity plating of traditional lithium metal anode and anode-free lithium metal battery. The researches of solid-state electrolytes are mainly focused on structure design and related performance in sulfide based-, oxide based-, polymer based-solid-state electrolytes and its composites, whereas liquid electrolytes and additives are improved by the optimal design of solvents and lithium salts for different battery systems and adding novel functional additives. For solid-state batteries, the studies are mainly focused on the improvement of ionic and electronic conductivity in cathodes. To suppress the "shuttle effect" and activate sulfur of Li-S battery, composite sulfur cathode with high ion/electron conductive matrix and functional binders are studied. There are a few papers for the characterization techniques are on lithium deposition and volume change of silicon-based anode materials, etc. Furthermore, several research works related to battery technology are done to understand the fabrication of electrode and the properties of slurry.
Keywords:lithium batteries
;
cathode material
;
anode material
;
solid state electrolyte
;
battery technology
Kanaphan等[20]制备了一种石墨烯与SiO x 纳米复合材料,SiO x 纳米小团簇均匀地分散在石墨烯基体中,确保了纳米复合材料的无团聚和优异的导电性能。SiO x 纳米复合材料表现出优异的电化学性能,在电流密度为1 A/g的循环次数超过1500周循环时,还有650 mAh/g的稳定比容量,容量保持率高达95%。
Kalidas等[21]采用热氧化法介孔硅微粒进行表面钝化处理。生成的氧化硅(SiO x )层起到了稳定Si表面的保护层作用,从而提高了Si电极的性能。电化学表征表明,Si/SiO x 的电极性能与氧含量密切相关。当氧含量低于34%(质量分数)时,Si/SiO x 阳极的放电容量超过2000 mAh/g,但当氧含量较高时,容量则大幅度降低。优化的样品(700 ℃氧化)的首周库仑效率为78%,0.2 C倍率下循环180周后,仍有800 mAh/g的稳定比容量。
Li等[28]通过物理气相沉积为有限锂源的金属锂负极制备了由人工固体电解质层(LiF)和亲锂层(Li x Au合金)组成的多层功能结构。亲锂合金层的均质成核与人工SEI层LiF的保护协同作用,有效诱导均匀可逆的锂沉积,并在沉积过程中保持形态结构的完整性,提高电池的循环性能。优化后的阳极在多层膜协同作用下半电池在160次循环中保持了98.8%的平均库仑效率,与LiFePO4正极结合使用时,初始容量为148 mAh/g,在130次循环中保持率为97.5%。
Liu等[46]以烯丙基苯砜(APS)作为电解质添加剂,研究对SiO x /C电极的界面稳定性和性能的影响。结果表明,加APS有助于形成致密、坚固的固体电解质界面膜,具有较高的机械强度和良好的锂离子扩散动力学,有效抑制了电极-电解质界面的寄生副反应。同时,APS与电解质中微量水/酸的强相互作用进一步有利于提高界面稳定性,可提高(LiNi0.9Co0.05Mn0.05O2)全电池的循环性能。
Yoon等[53]研究了Li6PS5Cl基固态电池在苛刻储存条件下的可靠性,采用LiNbO3包覆的NCM811对Li-I n 构建电池,在低至70 ℃的高温条件下不可逆转地引起了电池电阻升高,揭示了该Li6PS5Cl基电池的不稳定性。实验显示,这种存储条件会导致Li6PS5Cl在与正极的接触中发生分解,且在带电条件下会发生SO x 气体的析出,从而产生多孔的正极/电解质界面进而使界面电阻增大。提出在全固态电池的应用中,需要在各种实际操作条件下重新考虑固态电解质的稳定性,以保证其失效安全性。
Chen等[82]应用电化学原子力显微镜(EC-AFM)研究了富Li和富Mn(LMR)材料在富F电解质(1 mol/L LiPF6 in FEC/FEMC/HFE)作用下的界面变化。研究表明,在高电压作用下,电解质在LMR材料表面形成了均匀致密的CEI钝化膜。X射线光电子能谱(XPS)证实CEI是由无机LiF衬底组成。
GAO D C, YANG J X, ZHANG D Y, et al. An effective strategy to enhance the electrochemical performance of LiNi0.6Mn0.2Co0.2O2: Optimizing a Li diffusion pathway via magnetic alignment of single-crystal cathode material under an ordinary 0.4-T magnetic field[J]. Ceramics International, 2022, 48(21): doi: 10.1016/j.ceramint.2022.07.081.
MENG J X, XU L S, MA Q X, et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes[J]. Advanced Functional Materials, 2022, 32(19): doi: 10.1002/adfm.202113013.
TAN X X, PENG W, LUO G, et al. Chemical and structural evolution during solid-state synthesis of cobalt-free nickel-rich layered oxide cathode[J]. Materials Today Energy, 2022, 29: doi: 10.1016/j.mtener. 2022.101114.
LIU L, ZHANG Y J, ZHAO Y, et al. Surface growth and intergranular separation of polycrystalline particles for regeneration of stable single-crystal cathode materials[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29886-29895.
OH J, LEE S-Y, KIM H, et al. Overcharge-Induced phase heterogeneity and resultant twin-like layer deformation in lithium cobalt oxide cathode for lithium-ion batteries[J]. Advanced Science, 2022, 9(32): doi: 10.1002/advs.202203639.
WANG Y Y, WANG Y Y, LIU S, et al. Building the stable oxygen framework in high-Ni layered oxide cathode for high-energy-density Li-ion batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1260-1269.
MAHARA Y, NAGASAKO N, OKA H, et al. How fluorine introduction solves the spinel transition, a fundamental problem of Mn-based positive electrodes[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24321-24331.
AKIYOSHI R, FUJIWARA M, KAMAKURA Y, et al. Effect of a one-dimensional columnar structure on the cathode active material performance of single-component hexaazatriphenylene derivatives[J]. ACS Applied Energy Materials, 2022, 5(10): 12760-12767.
CHEN Z F, SU H, SUN P F, et al. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(6): doi: 10.1073/pnas.2116775119.
YOON E, LEE J, BYUN S, et al. Passivation failure of Al current collector in LiPF6-based electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(22): doi: 10.1002/adfm. 202200026.
ZHANG J J, WANG J, WU S M, et al. A novel scheme to improve the stability of conventional-concentration electrolyte at high voltage[J]. Batteries & Supercaps, 2022: doi: 10.1002/batt.202200329.
BURDETTE-TROFIMOV M K, ARMSTRONG B L, KORKOSZ R J, et al. Understanding the solution dynamics and binding of a PVDF binder with silicon, graphite, and NMC materials and the influence on cycling performance[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23322-23331.
CHEN X X, CHEN Z H, NI Y, et al. Double-shell interphase design enabling suppressed side reactions for stable Si battery anode[J]. Applied Physics Letters, 2022, 121(12): doi: 10.1063/5.0117229.
GRAF M, BERG C, BERNHARD R, et al. Effect and progress of the amorphization process for microscale silicon particles under partial lithiation as active material in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac4b80.
HARUTA M, KONAGA H, DOI T, et al. Perfluoroinated ionomer as an artificial SEI for silicon nano-flake anode in LiTFSI/tetraglyme solvate ionic liquid[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac4e59.
NIESEN S, FOX A, MURUGAN S, et al. Multifunctional self-cross-linked copolymer binder for high-loading silicon anodes[J]. ACS Applied Energy Materials, 2022, 5(9): 11386-11391.
SUN W Z, XU L, ZHU A P. Preparation and electrochemical performance of nanocarbon-isolated nano-sheet silicon lithium-ion battery anode material[J]. Journal of Solid State Electrochemistry, 2022, 26(11): 2585-2593.
TZENG Y, JHAN C Y, WU Y H. Effects of pyrolysis on high-capacity Si-based anode of lithium ion battery with high coulombic efficiency and long cycling life[J]. Nanomaterials (Basel, Switzerland), 2022, 12(3): doi: 10.3390/nano12030469.
YU Z Z, ZHOU L H, TONG J L, et al. Improving electrochemical performance of thick silicon film anodes with implanted solid lithium source electrolyte[J]. The Journal of Physical Chemistry Letters, 2022, 13(37): 8725-8732.
KALIDAS N, SHEN X, YUAN M, et al. Controlled surface oxidation of mesoporous silicon microparticles to achieve a stable Si/SiOx anode for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2022, 344: doi: 10.1016/j.micromeso.2022.112243.
ZUO X X, YANG Q H, HE Y L, et al. High-temperature magnesiothermic reduction enables HF-free synthesis of porous silicon with enhanced performance as lithium-ion battery anode[J]. Molecules (Basel, Switzerland), 2022, 27(21): doi: 10.3390/molecules27217486.
ZHANG Y, LIU Y, TAN L G, et al. Collaborative assembly of a fluorine-enriched heterostructured solid electrolyte interphase for ultralong-life lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43917-43925.
LIANG P, SUN H, HUANG C L, et al. A nonflammable high-voltage 4.7 V anode-free lithium battery[J]. Advanced Materials, 2022, doi: 10.1002/adma.202207361.
PENG J, WU D, LU P, et al. High-safety, wide-temperature-range, low-external-pressure and dendrite-free lithium battery with sulfide solid electrolyte[J]. Energy Storage Materials, 2023, 54: 430-439.
GENG K, EISENMANN T, PARMAR R, et al. Impact of a PEO-based interphase at the negative electrode of "zero excess" lithium-metal batteries[J]. Journal of the Electrochemical Society, 2022, 169(11): doi: 10.1149/1945-7111/ac9f74.
YANG X S, MENG Y, XIAO D. Achievable fast charge transfer by tuning reasonable solid-electrolyte interphase structures[J]. Journal of Materials Chemistry A, 2022, doi: 10.1039/d2ta07035a.
LI C, LI Y, YU Y K, et al. One-pot preparation of lithium compensation layer, lithiophilic layer, and artificial solid electrolyte interphase for lean-lithium metal anode[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19437-19447.
YANG J, CHEN C, KASHIF K, et al. Melting lithium alloying to improve the affinity of Cu foil for ultra-thin lithium metal anode[J]. Journal of Colloid and Interface Science, 2023, 630: 901-908.
AO Z R, ZOU Y L, ZOU H Y, et al. Enhanced cycling performance of all-solid-state Li-S battery enabled by PVP-blended PEO-based double-layer electrolyte[J]. Chemistry-A European Journal, 2022, 28(34): doi: 10.1002/chem.202200543.
CHANG Z, YANG H J, ZHU X Y, et al. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-29118-6.
JIANG Y X, SONG Y, CHEN X, et al. In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries[J]. Energy Storage Materials, 2022, 52: 514-523.
LI Q, ZHANG Z, LI Y, et al. Rapid self-healing gel electrolyte based on deep eutectic solvents for solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2022, doi: 10.1021/acsami. 2c12445.
SUN Z J, XI K, CHEN J, et al. Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode[J]. Nature Communications, 2022, 13: 3209.
WANG X Z, YE L H, NAN C W, et al. Effect of solvents on a Li10GeP2S12-based composite electrolyte via solution method for solid-state battery applications[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46627-46634.
KAMIKAWA Y, AMEZAWA K. xLi6PS5Cl/(1-x)(perfluoropolyethers-ethoxy-diol/lithium bis(trifluoromethanesulfonyl)imide) electrolyte for superior stability against a metallic lithium anode[J]. ACS Applied Energy Materials, 2022, 5(11): 13243-13253.
HAN A, TIAN R, FANG L, et al. A low-cost liquid-phase method of synthesizing high-performance Li6PS5Cl solid-electrolyte[J]. Acs Applied Materials & Interfaces, 2022, 14(29): 30824-30838.
WANG G D, LIN C, GAO C, et al. Hydrolysis-resistant and Anti-dendritic halide composite Li3PS4-LiI solid electrolyte for all-solid-state lithium batteries[J]. Electrochimica Acta, 2022, 428: doi: 10.1016/j.electacta.2022.140906.
ZHANG Z C, TIAN Y T, LIU G Z, et al. Superionic lithium argyrodite electrolytes by bromine-doping for all-solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2022, 169(4): doi: 10.1149/ 1945-7111/ac67b4.
DEL OLMO R, MENDES T C, FORSYTH M, et al. Mixed ionic and electronic conducting binders containing PEDOT: PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes[J]. Journal of Materials Chemistry A, 2022, 10(37): 19777-19786.
FANG S, WU F L, ZARRABEITIA M, et al. Enhancing the interfacial stability of high-energy Si/Graphite||LiNi0.88Co0.09Mn0.03O2 batteries employing a dual-anion ionic liquid-based electrolyte[J]. Batteries & Supercaps, 2022, 5(10): doi: 10.1002/batt.202200286.
CHEN W L, CHEN K Y, ZENG R, et al. In situ construction of S-based artificial solid electrolyte interphases layer for stable silicon anode in lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): 14136-14143.
HAAS R, JANEK J. The influence of oxygen dissolved in the liquid electrolyte on lithium metal anodes[J]. Journal of the Electrochemical Society, 2022, 169(11): doi: 10.1149/1945-7111/ac9d6b.
YIN Y, YANG Y, CHENG D, et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries[J]. Nature Energy, 2022, 7(6): 548-559.
LIU G P, GAO J, XIA M, et al. Strengthening the interfacial stability of the silicon-based electrode via an electrolyte Additive─Allyl phenyl sulfone[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38281-38290.
AZAM S, MEISNER Q, AIKEN C P, et al. Performance of a novel in situ converted additive for high voltage Li-ion pouch cells[J]. Journal of the Electrochemical Society, 2022, 169(10): doi: 10.1149/1945-7111/ac9c36.
NAIK K G, VISHNUGOPI B S, MUKHERJEE P P. Kinetics or transport: Whither goes the solid-state battery cathode? [J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29754-29765.
MA Y, WU T, JIAO Y, et al. Single nickel atom catalysts enable fast polysulfide redox for safe and long-cycle lithium-sulfur batteries[J]. Small, 2022, doi: 10.1002/smll.202205470.
GUO H J, SUN Y P, ZHAO Y, et al. Surface degradation of single-crystalline Ni-rich cathode and regulation mechanism by atomic layer deposition in solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2022, 61(48): doi: 10.1002/anie. 202211626.
YANG Y N, CUI C H, HOU Z Q, et al. Interface reconstruction via lithium thermal reduction to realize a long life all-solid-state battery[J]. Energy Storage Materials, 2022, 52: 1-9.
YOON K, KIM H, HAN S, et al. Detrimental effect of high-temperature storage on sulfide-based all-solid-state batteries[J]. Applied Physics Reviews, 2022, 9(3): doi: 10.1063/5.0088838.
LIU M, XIE W H, LI B, et al. Garnet Li7La3Zr2O12-based solid-state lithium batteries achieved by in situ thermally polymerized gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43116-43126.
HOU L P, LI X Y, BI C X, et al. Constructing lithium oxysulfide-rich solid electrolyte interphase to shield polysulfides in practical lithium-sulfur batteries[J]. Journal of Power Sources, 2022, 550: doi: 10.1016/j.jpowsour.2022.232144.
LI C, ZHANG Q, SHENG J Z, et al. A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(10): 4289-4300.
SHENG J Z, ZHANG Q, SUN C B, et al. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, 32(40): doi: 10.1002/adfm.202203272 .
XU J, ZHANG H, YU F T, et al. Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework[J]. Angewandte Chemie International Edition, 2022, 61(47): doi: 10.1002/anie. 202211933.
CHEN Z Z, PENG Y H, YANG Z H, et al. Ultraviolet in situ polymerized binders with polysulfide-trapping properties for long-cycle-life lithium-sulfur batteries[J]. Macromolecular Rapid Communications, 2022, 43(19): doi: 10.1002/marc.202200327 .
DIAO W Y, XIE D, LI D L, et al. Ion sieve membrane: Homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery[J]. Journal of Colloid and Interface Science, 2022, 627: 730-738.
MOTOYOSHI R, LI S L, TSUZUKI S, et al. Carbonaceous-material-induced gelation of concentrated electrolyte solutions for application in lithium-sulfur battery cathodes[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45403-45413.
ZHANG C Y, ZHANG C Q, SUN G W, et al. Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field[J]. Angewandte Chemie International Edition, 2022, 61(49): doi: 10.1002/anie.202211570.
TAN J, LI X, FANG Z, et al. Integrating LiF-rich solid electrolyte interphase and in situ formed gel blocking layer for Li-S battery[J]. Journal of Power Sources, 2022, 548: doi: 10.1016/j.jpowsour. 2022.232035.
WANG F H, ZHANG Q, LIU Z, et al. A bifunctional lithium polysilicate as highly efficient adhesion agent and anchoring host for long-lifespan Li-S battery[J]. Journal of Colloid and Interface Science, 2023, 629: 1045-1054.
DU M, GENG P B, PEI C X, et al. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2022, 61(41): doi: 10.1002/anie.202209350.
THANGAVEL N K, MAHANKALI K, ARAVA L M R. Nanoscale visualization of reversible redox pathways in lithium-sulfur battery using in situ AFM-SECM[J]. Journal of the Electrochemical Society, 2022, 169(6): doi: 10.1149/1945-7111/ac70ff.
ZAYAT B, ELIZALDE-SEGOVIA R, DAS P, et al. The role of functionalized conducting polymer binders in improving power density and cycle life of lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2022, 169(10): doi: 10.1149/1945-7111/ac9551.
GONG Q, HOU L, LI T Y, et al. Regulating the molecular interactions in polymer binder for high-performance lithium-sulfur batteries[J]. ACS Nano, 2022, 16(5): 8449-8460.
COSBY M R, CARIGNAN G M, LI Z, et al. Operando synchrotron studies of inhomogeneity during anode-free plating of Li metal in pouch cell batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac5345.
HE X, LARSON J M, BECHTEL H A, et al. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-29103-z.
ZHANG S Q, LI R H, HU N, et al. Tackling realistic Li+ flux for high-energy lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33151-w.
KIRKALDY N, SAMIEIAN M A, OFFER G J, et al. Lithium-ion battery degradation: Measuring rapid loss of active silicon in silicon-graphite composite electrodes[J]. ACS Applied Energy Materials, 2022, 5(11): doi: 10.1021/acsaem.2c02047.
PREHAL C, VON MENTLEN J M, DRVARIČ TALIAN S, et al. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33931-4.
SWALLOW J E N, FRASER M W, KNEUSELS N J H, et al. Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33691-1.
BARRIOS E A, RAINS A A, LIN Y, et al. Li-ion permeability of holey graphene in solid state batteries: A particle dynamics study[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21363-21370.
DAVE A, MITCHELL J, BURKE S, et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-32938-1.
ADEMMER M, PRIFLING B, WELLER M, et al. Investigating the influence of the calendering process on the 3D microstructure of single-layer and two-layer cathodes in lithium-ion batteries using synchrotron tomography[J]. Journal of Power Sources, 2022, 548: doi: 10.1016/j.jpowsour.2022.231960.
LIU M, ZHANG S N, VAN ECK E R H, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17(9): 959-967.
YANG Z Z, KIM M, TSAI Y, et al. Extreme fast charging: Effect of positive electrode material on crosstalk[J]. Journal of the Electrochemical Society, 2022, 169(11): doi: 10.1149/1945-7111/ac9d0d.
CHEN M J, WANG W, SHI Z, et al. Revealing the cathode electrolyte interphase on Li- and Mn-rich materials by in situ electrochemical atomic force microscopy[J]. Applied Surface Science, 2022, 600: doi: 10.1016/j.apsusc.2022.154119.
LEE H J, MOON J S, BYEON Y W, et al. Lithiation pathway mechanism of Si-C composite anode revealed by the role of nanopore using In situ lithiation[J]. ACS Energy Letters, 2022, 7(8): 2469-2476.
KIM T, KIM K, LEE S, et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries[J]. Chemistry of Materials, 2022, 34(20): 9159-9171.
SWIFT M W, JAGAD H, PARK J, et al. Predicting low-impedance interfaces for solid-state batteries[J]. Current Opinion in Solid State and Materials Science, 2022, 26(3): doi: 10.1016/j.cossms. 2022.100990.
LUO N J, FENG L G, YIN H M, et al. Li8MnO6: A novel cathode material with only anionic redox[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29832-29843.
ALTVATER A, HECKMANN T, ESER J C, et al. (near-) infrared drying of lithium-ion battery electrodes: Influence of energy input on process speed and electrode adhesion[J]. Energy Technology, 2022: doi: 10.1002/ente.202200785.
BABOO J P, YATOO M A, DENT M, et al. Exploring different binders for a LiFePO4 battery, battery testing, modeling and simulations[J]. Energies, 2022, 15(7): doi: 10.3390/en15072332.
CHO H, PARK K. Energy density improvement by controlling the properties of conductive agents in Ni-rich cathodes[J]. International Journal of Energy Research, 2022, 46(2): 2073-2080.
PLATEAU T P, PHAM H, ZHU Y Q, et al. Enabling ultrathick electrodes via a microcasting process for high energy and power density lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(38): doi: 10.1002/aenm.202201353.
OKA H, KONDO H, HASEGAWA M, et al. Lithium-ion batteries using metal foil-free electrodes toward sustainable battery circulation[J]. Journal of Applied Electrochemistry, 2022: 1-13.
KIM J H, KIM J M, CHO S K, et al. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30112-1.
ZHAO B, YIN D S, GAO Y F, et al. Effect of various components on time-dependent rheological behavior of cathode slurries for lithium-ion batteries[J]. Journal of Electronic Materials, 2022, 51(7): 3885-3895.
BRILLONI A, MARCHESINI F, POLI F, et al. Performance comparison of LMNO cathodes produced with pullulan or PEDOT: PSS water-processable binders[J]. Energies, 2022, 15(7): doi: 10.3390/en15072608.
HOFFMANN A, HEIDER E A, DREER C, et al. Influence of the mixing and dispersing process on the slurry properties and the microstructure and performance of ultrathick cathodes for lithium-ion batteries[J]. Energy Technology, 2022: doi: 10.1002/ente. 202200484.
MATHEW A, MISIEWICZ C, LACEY M J, et al. Understanding the capacity fade in polyacrylonitrile binder-based LiNi0.5Mn1.5O4 cells[J]. Batteries & Supercaps, 2022, 5(12): doi: 10.1002/batt.202200279.
PADARTI J, HIRAI S, SAKAGAMI H, et al. Slurry solvent content influence on electrode preparation, microstructure and performance[J]. Journal of the Ceramic Society of Japan, 2022, 130(10): 832-836.
REYNOLDS C D, HARE S D, SLATER P R, et al. Rheology and structure of lithium-ion battery electrode slurries[J]. Energy Technology, 2022, 10(10): doi: 10.1002/ente.202200545.
KIM M, SPINDLER B D, DONG L F, et al. Li8ZrO6 as a pre-lithiation additive for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): doi: 10.1021/acsaem.2c02980.
... Kanaphan等[20]制备了一种石墨烯与SiO x 纳米复合材料,SiO x 纳米小团簇均匀地分散在石墨烯基体中,确保了纳米复合材料的无团聚和优异的导电性能.SiO x 纳米复合材料表现出优异的电化学性能,在电流密度为1 A/g的循环次数超过1500周循环时,还有650 mAh/g的稳定比容量,容量保持率高达95%. ...
1
... Kalidas等[21]采用热氧化法介孔硅微粒进行表面钝化处理.生成的氧化硅(SiO x )层起到了稳定Si表面的保护层作用,从而提高了Si电极的性能.电化学表征表明,Si/SiO x 的电极性能与氧含量密切相关.当氧含量低于34%(质量分数)时,Si/SiO x 阳极的放电容量超过2000 mAh/g,但当氧含量较高时,容量则大幅度降低.优化的样品(700 ℃氧化)的首周库仑效率为78%,0.2 C倍率下循环180周后,仍有800 mAh/g的稳定比容量. ...
... Liu等[46]以烯丙基苯砜(APS)作为电解质添加剂,研究对SiO x /C电极的界面稳定性和性能的影响.结果表明,加APS有助于形成致密、坚固的固体电解质界面膜,具有较高的机械强度和良好的锂离子扩散动力学,有效抑制了电极-电解质界面的寄生副反应.同时,APS与电解质中微量水/酸的强相互作用进一步有利于提高界面稳定性,可提高(LiNi0.9Co0.05Mn0.05O2)全电池的循环性能. ...
... Yoon等[53]研究了Li6PS5Cl基固态电池在苛刻储存条件下的可靠性,采用LiNbO3包覆的NCM811对Li-I n 构建电池,在低至70 ℃的高温条件下不可逆转地引起了电池电阻升高,揭示了该Li6PS5Cl基电池的不稳定性.实验显示,这种存储条件会导致Li6PS5Cl在与正极的接触中发生分解,且在带电条件下会发生SO x 气体的析出,从而产生多孔的正极/电解质界面进而使界面电阻增大.提出在全固态电池的应用中,需要在各种实际操作条件下重新考虑固态电解质的稳定性,以保证其失效安全性. ...