储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 1-15.doi: 10.19799/j.cnki.2095-4239.2022.0756
田孟羽(), 武怿达, 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2022-12-19
出版日期:
2023-01-05
发布日期:
2023-02-08
通讯作者:
黄学杰
E-mail:tianmengyu18@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
田孟羽(1996—),男,博士研究生,研究方向为锂离子电池正极加锂材料和高容量负极材料界面问题,E-mail:tianmengyu18@mails.ucas.ac.cn;
Mengyu TIAN(), Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-12-19
Online:
2023-01-05
Published:
2023-02-08
Contact:
Xuejie HUANG
E-mail:tianmengyu18@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2022年10月1日至2022年11月30日上线的锂电池研究论文,共有3301篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元和尖晶石镍锰酸锂的表面改性和体相掺杂,及其在长循环过程中或高电压下所发生的表面和体相的结构演变。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用。金属锂负极的研究包含金属锂的表面修饰和无负极金属锂电池。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注正极中离子、电子传输能力的提升。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。测试技术涵盖了锂沉积和硅负极演化等方面。电池工艺相关的研究工作侧重于电极极片制作和浆料的特性。
中图分类号:
田孟羽, 武怿达, 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.10.01—2022.11.30)[J]. 储能科学与技术, 2023, 12(1): 1-15.
Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022)[J]. Energy Storage Science and Technology, 2023, 12(1): 1-15.
1 | GAO D C, YANG J X, ZHANG D Y, et al. An effective strategy to enhance the electrochemical performance of LiNi0.6Mn0.2Co0.2O2: Optimizing a Li diffusion pathway via magnetic alignment of single-crystal cathode material under an ordinary 0.4-T magnetic field[J]. Ceramics International, 2022, 48(21): doi: 10.1016/j.ceramint.2022.07.081. |
2 | MENG J X, XU L S, MA Q X, et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes[J]. Advanced Functional Materials, 2022, 32(19): doi: 10.1002/adfm.202113013. |
3 | TAN X X, PENG W, LUO G, et al. Chemical and structural evolution during solid-state synthesis of cobalt-free nickel-rich layered oxide cathode[J]. Materials Today Energy, 2022, 29: doi: 10.1016/j.mtener. 2022.101114. |
4 | LIU L, ZHANG Y J, ZHAO Y, et al. Surface growth and intergranular separation of polycrystalline particles for regeneration of stable single-crystal cathode materials[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29886-29895. |
5 | OH J, LEE S-Y, KIM H, et al. Overcharge-Induced phase heterogeneity and resultant twin-like layer deformation in lithium cobalt oxide cathode for lithium-ion batteries[J]. Advanced Science, 2022, 9(32): doi: 10.1002/advs.202203639. |
6 | WANG Y Y, WANG Y Y, LIU S, et al. Building the stable oxygen framework in high-Ni layered oxide cathode for high-energy-density Li-ion batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1260-1269. |
7 | MAHARA Y, NAGASAKO N, OKA H, et al. How fluorine introduction solves the spinel transition, a fundamental problem of Mn-based positive electrodes[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24321-24331. |
8 | AKIYOSHI R, FUJIWARA M, KAMAKURA Y, et al. Effect of a one-dimensional columnar structure on the cathode active material performance of single-component hexaazatriphenylene derivatives[J]. ACS Applied Energy Materials, 2022, 5(10): 12760-12767. |
9 | CHEN Z F, SU H, SUN P F, et al. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(6): doi: 10.1073/pnas.2116775119. |
10 | YOON E, LEE J, BYUN S, et al. Passivation failure of Al current collector in LiPF6-based electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(22): doi: 10.1002/adfm. 202200026. |
11 | ZHANG J J, WANG J, WU S M, et al. A novel scheme to improve the stability of conventional-concentration electrolyte at high voltage[J]. Batteries & Supercaps, 2022: doi: 10.1002/batt.202200329. |
12 | BURDETTE-TROFIMOV M K, ARMSTRONG B L, KORKOSZ R J, et al. Understanding the solution dynamics and binding of a PVDF binder with silicon, graphite, and NMC materials and the influence on cycling performance[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23322-23331. |
13 | CHEN X X, CHEN Z H, NI Y, et al. Double-shell interphase design enabling suppressed side reactions for stable Si battery anode[J]. Applied Physics Letters, 2022, 121(12): doi: 10.1063/5.0117229. |
14 | GRAF M, BERG C, BERNHARD R, et al. Effect and progress of the amorphization process for microscale silicon particles under partial lithiation as active material in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac4b80. |
15 | HARUTA M, KONAGA H, DOI T, et al. Perfluoroinated ionomer as an artificial SEI for silicon nano-flake anode in LiTFSI/tetraglyme solvate ionic liquid[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac4e59. |
16 | NIESEN S, FOX A, MURUGAN S, et al. Multifunctional self-cross-linked copolymer binder for high-loading silicon anodes[J]. ACS Applied Energy Materials, 2022, 5(9): 11386-11391. |
17 | SUN W Z, XU L, ZHU A P. Preparation and electrochemical performance of nanocarbon-isolated nano-sheet silicon lithium-ion battery anode material[J]. Journal of Solid State Electrochemistry, 2022, 26(11): 2585-2593. |
18 | TZENG Y, JHAN C Y, WU Y H. Effects of pyrolysis on high-capacity Si-based anode of lithium ion battery with high coulombic efficiency and long cycling life[J]. Nanomaterials (Basel, Switzerland), 2022, 12(3): doi: 10.3390/nano12030469. |
19 | YU Z Z, ZHOU L H, TONG J L, et al. Improving electrochemical performance of thick silicon film anodes with implanted solid lithium source electrolyte[J]. The Journal of Physical Chemistry Letters, 2022, 13(37): 8725-8732. |
20 | KANAPHAN Y, KLAMCHUEN A, CHAIKAWANG C, et al. Interfacially enhanced stability and electrochemical properties of C/SiOx nanocomposite lithium-ion battery anodes[J]. Advanced Materials Interfaces, 2022, 9(19): doi: 10.1002/admi.202200303. |
21 | KALIDAS N, SHEN X, YUAN M, et al. Controlled surface oxidation of mesoporous silicon microparticles to achieve a stable Si/SiOx anode for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2022, 344: doi: 10.1016/j.micromeso.2022.112243. |
22 | ZUO X X, YANG Q H, HE Y L, et al. High-temperature magnesiothermic reduction enables HF-free synthesis of porous silicon with enhanced performance as lithium-ion battery anode[J]. Molecules (Basel, Switzerland), 2022, 27(21): doi: 10.3390/molecules27217486. |
23 | ZHANG Y, LIU Y, TAN L G, et al. Collaborative assembly of a fluorine-enriched heterostructured solid electrolyte interphase for ultralong-life lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43917-43925. |
24 | LIANG P, SUN H, HUANG C L, et al. A nonflammable high-voltage 4.7 V anode-free lithium battery[J]. Advanced Materials, 2022, doi: 10.1002/adma.202207361. |
25 | PENG J, WU D, LU P, et al. High-safety, wide-temperature-range, low-external-pressure and dendrite-free lithium battery with sulfide solid electrolyte[J]. Energy Storage Materials, 2023, 54: 430-439. |
26 | GENG K, EISENMANN T, PARMAR R, et al. Impact of a PEO-based interphase at the negative electrode of "zero excess" lithium-metal batteries[J]. Journal of the Electrochemical Society, 2022, 169(11): doi: 10.1149/1945-7111/ac9f74. |
27 | YANG X S, MENG Y, XIAO D. Achievable fast charge transfer by tuning reasonable solid-electrolyte interphase structures[J]. Journal of Materials Chemistry A, 2022, doi: 10.1039/d2ta07035a. |
28 | LI C, LI Y, YU Y K, et al. One-pot preparation of lithium compensation layer, lithiophilic layer, and artificial solid electrolyte interphase for lean-lithium metal anode[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19437-19447. |
29 | YANG J, CHEN C, KASHIF K, et al. Melting lithium alloying to improve the affinity of Cu foil for ultra-thin lithium metal anode[J]. Journal of Colloid and Interface Science, 2023, 630: 901-908. |
30 | AO Z R, ZOU Y L, ZOU H Y, et al. Enhanced cycling performance of all-solid-state Li-S battery enabled by PVP-blended PEO-based double-layer electrolyte[J]. Chemistry-A European Journal, 2022, 28(34): doi: 10.1002/chem.202200543. |
31 | CHANG Z, YANG H J, ZHU X Y, et al. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-29118-6. |
32 | JIANG Y X, SONG Y, CHEN X, et al. In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries[J]. Energy Storage Materials, 2022, 52: 514-523. |
33 | LI Q, ZHANG Z, LI Y, et al. Rapid self-healing gel electrolyte based on deep eutectic solvents for solid-state lithium batteries[J]. Acs Applied Materials & Interfaces, 2022, doi: 10.1021/acsami. 2c12445. |
34 | SUN Z J, XI K, CHEN J, et al. Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode[J]. Nature Communications, 2022, 13: 3209. |
35 | JEONG H, NA D, BAEK J, et al. Synthesis of superionic conductive Li1+ x+ yAlxSiyTi2- xP3- yO12 solid electrolytes[J]. Nanomaterials(Basel, Switzerland), 2022, 12(7): doi: 10.3390/nano12071158. |
36 | WANG X Z, YE L H, NAN C W, et al. Effect of solvents on a Li10GeP2S12-based composite electrolyte via solution method for solid-state battery applications[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46627-46634. |
37 | KAMIKAWA Y, AMEZAWA K. xLi6PS5Cl/(1-x)(perfluoropolyethers-ethoxy-diol/lithium bis(trifluoromethanesulfonyl)imide) electrolyte for superior stability against a metallic lithium anode[J]. ACS Applied Energy Materials, 2022, 5(11): 13243-13253. |
38 | HAN A, TIAN R, FANG L, et al. A low-cost liquid-phase method of synthesizing high-performance Li6PS5Cl solid-electrolyte[J]. Acs Applied Materials & Interfaces, 2022, 14(29): 30824-30838. |
39 | WANG G D, LIN C, GAO C, et al. Hydrolysis-resistant and Anti-dendritic halide composite Li3PS4-LiI solid electrolyte for all-solid-state lithium batteries[J]. Electrochimica Acta, 2022, 428: doi: 10.1016/j.electacta.2022.140906. |
40 | ZHANG Z C, TIAN Y T, LIU G Z, et al. Superionic lithium argyrodite electrolytes by bromine-doping for all-solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2022, 169(4): doi: 10.1149/ 1945-7111/ac67b4. |
41 | DEL OLMO R, MENDES T C, FORSYTH M, et al. Mixed ionic and electronic conducting binders containing PEDOT: PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes[J]. Journal of Materials Chemistry A, 2022, 10(37): 19777-19786. |
42 | FANG S, WU F L, ZARRABEITIA M, et al. Enhancing the interfacial stability of high-energy Si/Graphite||LiNi0.88Co0.09Mn0.03O2 batteries employing a dual-anion ionic liquid-based electrolyte[J]. Batteries & Supercaps, 2022, 5(10): doi: 10.1002/batt.202200286. |
43 | CHEN W L, CHEN K Y, ZENG R, et al. In situ construction of S-based artificial solid electrolyte interphases layer for stable silicon anode in lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): 14136-14143. |
44 | HAAS R, JANEK J. The influence of oxygen dissolved in the liquid electrolyte on lithium metal anodes[J]. Journal of the Electrochemical Society, 2022, 169(11): doi: 10.1149/1945-7111/ac9d6b. |
45 | YIN Y, YANG Y, CHENG D, et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries[J]. Nature Energy, 2022, 7(6): 548-559. |
46 | LIU G P, GAO J, XIA M, et al. Strengthening the interfacial stability of the silicon-based electrode via an electrolyte Additive─Allyl phenyl sulfone[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38281-38290. |
47 | CHEN J, LU H, ZHANG X, et al. Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery[J]. Energy Storage Materials, 2022, 50: 387-394. |
48 | AZAM S, MEISNER Q, AIKEN C P, et al. Performance of a novel in situ converted additive for high voltage Li-ion pouch cells[J]. Journal of the Electrochemical Society, 2022, 169(10): doi: 10.1149/1945-7111/ac9c36. |
49 | NAIK K G, VISHNUGOPI B S, MUKHERJEE P P. Kinetics or transport: Whither goes the solid-state battery cathode? [J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29754-29765. |
50 | MA Y, WU T, JIAO Y, et al. Single nickel atom catalysts enable fast polysulfide redox for safe and long-cycle lithium-sulfur batteries[J]. Small, 2022, doi: 10.1002/smll.202205470. |
51 | GUO H J, SUN Y P, ZHAO Y, et al. Surface degradation of single-crystalline Ni-rich cathode and regulation mechanism by atomic layer deposition in solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2022, 61(48): doi: 10.1002/anie. 202211626. |
52 | YANG Y N, CUI C H, HOU Z Q, et al. Interface reconstruction via lithium thermal reduction to realize a long life all-solid-state battery[J]. Energy Storage Materials, 2022, 52: 1-9. |
53 | YOON K, KIM H, HAN S, et al. Detrimental effect of high-temperature storage on sulfide-based all-solid-state batteries[J]. Applied Physics Reviews, 2022, 9(3): doi: 10.1063/5.0088838. |
54 | LIU M, XIE W H, LI B, et al. Garnet Li7La3Zr2O12-based solid-state lithium batteries achieved by in situ thermally polymerized gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43116-43126. |
55 | SUN B, WANG P P, XU J, et al. A garnet-electrolyte based molten Li-I2 battery with high performance[J]. Nano Research, 2022, 15(5): 4076-4082. |
56 | HOU L P, LI X Y, BI C X, et al. Constructing lithium oxysulfide-rich solid electrolyte interphase to shield polysulfides in practical lithium-sulfur batteries[J]. Journal of Power Sources, 2022, 550: doi: 10.1016/j.jpowsour.2022.232144. |
57 | ZHOU G M, CHEN H, CUI Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nature Energy, 2022, 7(4): 312-319. |
58 | LI C, ZHANG Q, SHENG J Z, et al. A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(10): 4289-4300. |
59 | SHENG J Z, ZHANG Q, SUN C B, et al. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, 32(40): doi: 10.1002/adfm.202203272 . |
60 | XU J, ZHANG H, YU F T, et al. Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework[J]. Angewandte Chemie International Edition, 2022, 61(47): doi: 10.1002/anie. 202211933. |
61 | CHEN Z Z, PENG Y H, YANG Z H, et al. Ultraviolet in situ polymerized binders with polysulfide-trapping properties for long-cycle-life lithium-sulfur batteries[J]. Macromolecular Rapid Communications, 2022, 43(19): doi: 10.1002/marc.202200327 . |
62 | DIAO W Y, XIE D, LI D L, et al. Ion sieve membrane: Homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery[J]. Journal of Colloid and Interface Science, 2022, 627: 730-738. |
63 | MOTOYOSHI R, LI S L, TSUZUKI S, et al. Carbonaceous-material-induced gelation of concentrated electrolyte solutions for application in lithium-sulfur battery cathodes[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45403-45413. |
64 | ZHANG C Y, ZHANG C Q, SUN G W, et al. Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field[J]. Angewandte Chemie International Edition, 2022, 61(49): doi: 10.1002/anie.202211570. |
65 | TAN J, LI X, FANG Z, et al. Integrating LiF-rich solid electrolyte interphase and in situ formed gel blocking layer for Li-S battery[J]. Journal of Power Sources, 2022, 548: doi: 10.1016/j.jpowsour. 2022.232035. |
66 | WANG F H, ZHANG Q, LIU Z, et al. A bifunctional lithium polysilicate as highly efficient adhesion agent and anchoring host for long-lifespan Li-S battery[J]. Journal of Colloid and Interface Science, 2023, 629: 1045-1054. |
67 | DU M, GENG P B, PEI C X, et al. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2022, 61(41): doi: 10.1002/anie.202209350. |
68 | THANGAVEL N K, MAHANKALI K, ARAVA L M R. Nanoscale visualization of reversible redox pathways in lithium-sulfur battery using in situ AFM-SECM[J]. Journal of the Electrochemical Society, 2022, 169(6): doi: 10.1149/1945-7111/ac70ff. |
69 | ZAYAT B, ELIZALDE-SEGOVIA R, DAS P, et al. The role of functionalized conducting polymer binders in improving power density and cycle life of lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2022, 169(10): doi: 10.1149/1945-7111/ac9551. |
70 | GONG Q, HOU L, LI T Y, et al. Regulating the molecular interactions in polymer binder for high-performance lithium-sulfur batteries[J]. ACS Nano, 2022, 16(5): 8449-8460. |
71 | COSBY M R, CARIGNAN G M, LI Z, et al. Operando synchrotron studies of inhomogeneity during anode-free plating of Li metal in pouch cell batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac5345. |
72 | HE X, LARSON J M, BECHTEL H A, et al. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-29103-z. |
73 | ZHANG S Q, LI R H, HU N, et al. Tackling realistic Li+ flux for high-energy lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33151-w. |
74 | KIRKALDY N, SAMIEIAN M A, OFFER G J, et al. Lithium-ion battery degradation: Measuring rapid loss of active silicon in silicon-graphite composite electrodes[J]. ACS Applied Energy Materials, 2022, 5(11): doi: 10.1021/acsaem.2c02047. |
75 | PREHAL C, VON MENTLEN J M, DRVARIČ TALIAN S, et al. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33931-4. |
76 | SWALLOW J E N, FRASER M W, KNEUSELS N J H, et al. Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33691-1. |
77 | BARRIOS E A, RAINS A A, LIN Y, et al. Li-ion permeability of holey graphene in solid state batteries: A particle dynamics study[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21363-21370. |
78 | DAVE A, MITCHELL J, BURKE S, et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-32938-1. |
79 | ADEMMER M, PRIFLING B, WELLER M, et al. Investigating the influence of the calendering process on the 3D microstructure of single-layer and two-layer cathodes in lithium-ion batteries using synchrotron tomography[J]. Journal of Power Sources, 2022, 548: doi: 10.1016/j.jpowsour.2022.231960. |
80 | LIU M, ZHANG S N, VAN ECK E R H, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17(9): 959-967. |
81 | YANG Z Z, KIM M, TSAI Y, et al. Extreme fast charging: Effect of positive electrode material on crosstalk[J]. Journal of the Electrochemical Society, 2022, 169(11): doi: 10.1149/1945-7111/ac9d0d. |
82 | CHEN M J, WANG W, SHI Z, et al. Revealing the cathode electrolyte interphase on Li- and Mn-rich materials by in situ electrochemical atomic force microscopy[J]. Applied Surface Science, 2022, 600: doi: 10.1016/j.apsusc.2022.154119. |
83 | LEE H J, MOON J S, BYEON Y W, et al. Lithiation pathway mechanism of Si-C composite anode revealed by the role of nanopore using In situ lithiation[J]. ACS Energy Letters, 2022, 7(8): 2469-2476. |
84 | KIM T, KIM K, LEE S, et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries[J]. Chemistry of Materials, 2022, 34(20): 9159-9171. |
85 | SWIFT M W, JAGAD H, PARK J, et al. Predicting low-impedance interfaces for solid-state batteries[J]. Current Opinion in Solid State and Materials Science, 2022, 26(3): doi: 10.1016/j.cossms. 2022.100990. |
86 | LUO N J, FENG L G, YIN H M, et al. Li8MnO6: A novel cathode material with only anionic redox[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29832-29843. |
87 | ALTVATER A, HECKMANN T, ESER J C, et al. (near-) infrared drying of lithium-ion battery electrodes: Influence of energy input on process speed and electrode adhesion[J]. Energy Technology, 2022: doi: 10.1002/ente.202200785. |
88 | BABOO J P, YATOO M A, DENT M, et al. Exploring different binders for a LiFePO4 battery, battery testing, modeling and simulations[J]. Energies, 2022, 15(7): doi: 10.3390/en15072332. |
89 | CHO H, PARK K. Energy density improvement by controlling the properties of conductive agents in Ni-rich cathodes[J]. International Journal of Energy Research, 2022, 46(2): 2073-2080. |
90 | PLATEAU T P, PHAM H, ZHU Y Q, et al. Enabling ultrathick electrodes via a microcasting process for high energy and power density lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(38): doi: 10.1002/aenm.202201353. |
91 | OKA H, KONDO H, HASEGAWA M, et al. Lithium-ion batteries using metal foil-free electrodes toward sustainable battery circulation[J]. Journal of Applied Electrochemistry, 2022: 1-13. |
92 | KIM J H, KIM J M, CHO S K, et al. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30112-1. |
93 | ZHAO B, YIN D S, GAO Y F, et al. Effect of various components on time-dependent rheological behavior of cathode slurries for lithium-ion batteries[J]. Journal of Electronic Materials, 2022, 51(7): 3885-3895. |
94 | BRILLONI A, MARCHESINI F, POLI F, et al. Performance comparison of LMNO cathodes produced with pullulan or PEDOT: PSS water-processable binders[J]. Energies, 2022, 15(7): doi: 10.3390/en15072608. |
95 | HOFFMANN A, HEIDER E A, DREER C, et al. Influence of the mixing and dispersing process on the slurry properties and the microstructure and performance of ultrathick cathodes for lithium-ion batteries[J]. Energy Technology, 2022: doi: 10.1002/ente. 202200484. |
96 | LEE M, JUNG H, LEE M, et al. Model fluid for coating flows of Li-ion battery anode slurry[J]. Journal of Materials Science, 2022, 57(38): 17935-17945. |
97 | MATHEW A, MISIEWICZ C, LACEY M J, et al. Understanding the capacity fade in polyacrylonitrile binder-based LiNi0.5Mn1.5O4 cells[J]. Batteries & Supercaps, 2022, 5(12): doi: 10.1002/batt.202200279. |
98 | PADARTI J, HIRAI S, SAKAGAMI H, et al. Slurry solvent content influence on electrode preparation, microstructure and performance[J]. Journal of the Ceramic Society of Japan, 2022, 130(10): 832-836. |
99 | REYNOLDS C D, HARE S D, SLATER P R, et al. Rheology and structure of lithium-ion battery electrode slurries[J]. Energy Technology, 2022, 10(10): doi: 10.1002/ente.202200545. |
100 | KIM M, SPINDLER B D, DONG L F, et al. Li8ZrO6 as a pre-lithiation additive for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): doi: 10.1021/acsaem.2c02980. |
[1] | 俎梦杨, 张梦, 李子坤, 黄令. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
[2] | 王绍聪, 李伟, 黄瑞琴, 郭艺飞, 刘峥. 锰基钠离子电池正极材料Jahn-Teller效应抑制方法进展[J]. 储能科学与技术, 2023, 12(1): 139-149. |
[3] | 陈清炀, 何映晖, 余官定, 刘铭扬, 徐翀, 李振明. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. |
[4] | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
[5] | 张文舒, 胡方圆, 黄昊, 王旭东, 姚曼. 基于Ti基MXene的储钠负极及其性能调控机制[J]. 储能科学与技术, 2023, 12(1): 35-41. |
[6] | 张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. |
[7] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[8] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[9] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[10] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
[11] | 吴敬华, 杨菁, 刘高瞻, 王脂胭, 张秩华, 俞海龙, 姚霞银, 黄学杰. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. |
[12] | 陈淼淼, 邵钦君, 陈剑. 锂电池高比能量正极材料Cr8O21 的制备及应用[J]. 储能科学与技术, 2022, 11(9): 3011-3020. |
[13] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[14] | 翟朋博, 常冬梅, 毕志杰, 赵宁, 郭向欣. 锂镧锆氧(LLZO)基固态锂电池界面关键问题研究进展[J]. 储能科学与技术, 2022, 11(9): 2847-2865. |
[15] | 尹涛, 贾隆舟, 常修亮, 戴作强, 郑莉莉. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||