1 |
FENG F, WU J C, WU C Z, et al. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(6): 654-666.
|
2 |
HU J P, XU B, YANG S A, et al. 2D electrides as promising anode materials for Na-ion batteries from first-principles study[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24016-24022.
|
3 |
WANG H, LAN X Z, JIANG D L, et al. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries[J]. Journal of Power Sources, 2015, 283: 187-194.
|
4 |
WANG X F, KAJIYAMA S, IINUMA H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7544.
|
5 |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(37): 4248-4253.
|
6 |
XU M, LEI S L, QI J, et al. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant[J]. ACS Nano, 2018, 12(4): 3733-3740.
|
7 |
KAZEMI S A, WANG Y. Super strong 2D titanium carbide MXene-based materials: A theoretical prediction[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2020, 32(11): doi: 10.1088/1361-648X/ab5bd8.
|
8 |
SHUCK C E, GOGOTSI Y. Taking MXenes from the lab to commercial products[J]. Chemical Engineering Journal, 2020, 401: doi: 10.1016/j.cej.2020.125786.
|
9 |
WU Y J, SUN Y J, ZHENG J F, et al. MXenes: Advanced materials in potassium ion batteries[J]. Chemical Engineering Journal, 2021, 404: doi: 10.1016/j.cej.2020.126565.
|
10 |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644.
|
11 |
YU H L, LIN W, ZHANG Y F, et al. Exploring the potentials of Ti3N2 and Ti3N2X2 (X = O, F, OH) monolayers as anodes for Li or non-Li ion batteries from first-principles calculations[J]. RSC Advances, 2019, 9(69): 40340-40347.
|
12 |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038/natrevmats.2016.98.
|
13 |
BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases[J]. Annual Review of Materials Research, 2011, 41: 195-227.
|
14 |
PERSSON P O Å, ROSEN J. Current state of the art on tailoring the MXene composition, structure, and surface chemistry[J]. Current Opinion in Solid State and Materials Science, 2019, 23(6): doi: 10.1016/j.cossms.2019.100774.
|
15 |
NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43): 15966-15969.
|
16 |
YANG Z F, ZHENG Y P, LI W L, et al. Investigation of two-dimensional HF-based MXenes as the anode materials for Li/Na-ion batteries: A DFT study[J]. Journal of Computational Chemistry, 2019, 40(13): 1352-1359.
|
17 |
YANG E, JI H, KIM J, et al. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(7): 5000-5005.
|
18 |
LI H, LIU A M, REN X F, et al. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: A combined experimental and theoretical study[J]. Nanoscale, 2019, 11(42): 19862-19869.
|
19 |
FANG Y Z, LIAN R Q, LI H P, et al. Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes[J]. ACS Nano, 2020, 14(7): 8744-8753.
|
20 |
WANG X, WANG J, QIN J W, et al. Surface charge engineering for covalently assembling three-dimensional MXene network for all-climate sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39181-39194.
|
21 |
WU Y T, NIE P, WU L Y, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chemical Engineering Journal, 2018, 334: 932-938.
|
22 |
GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): doi: 10.1063/1.3382344.
|
23 |
DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations[J]. The Journal of Physical Chemistry, 1993, 97(33): 8617-8624.
|
24 |
ZHANG W S, CHEN J, LIU S Y, et al. Atomic-scale investigation of electronic properties and Na storage performance of Ti3C2Tx-MXene bilayers with various terminations[J]. Applied Surface Science, 2021, 567: doi: 10.1016/j.apsusc.2021.150735.
|
25 |
ZHANG W S, LIU S Y, CHEN J, et al. Exploring the potentials of Ti3CiN2- iTx (i=0, 1, 2)-MXene for anode materials of high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22341-22350.
|
26 |
XU E Z, ZHANG Y, WANG H, et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 385: doi: 10.1016/j.cej.2019.123839.
|
27 |
ZHAO M Q, XIE X Q, REN C E, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage[J]. Advanced Materials, 2017, 29(37): doi: 10.1002/adma.201702410.
|