储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3062-3075.doi: 10.19799/j.cnki.2095-4239.2022.0160
成伟翔1(), 黄兴文1, 李越珠1, 胡俊祺1, 廖松义2(), 闵永刚1,2,3()
收稿日期:
2022-03-28
修回日期:
2022-04-27
出版日期:
2022-10-05
发布日期:
2022-10-10
通讯作者:
廖松义,闵永刚
E-mail:weixiangcheng2021@126.com;songyiliao@gdut.edu.cn;ygmin@gdut.edu.cn
作者简介:
成伟翔(1996—),男,硕士研究生,主要从事锂离子及钠离子电极材料制备,E-mail: weixiangcheng2021@126.com;
基金资助:
Weixiang CHENG1(), Xingwen HUANG1, Yuezhu LI1, Junqi HU1, Songyi LIAO2(), Yonggang MIN1,2,3()
Received:
2022-03-28
Revised:
2022-04-27
Online:
2022-10-05
Published:
2022-10-10
Contact:
Songyi LIAO, Yonggang MIN
E-mail:weixiangcheng2021@126.com;songyiliao@gdut.edu.cn;ygmin@gdut.edu.cn
摘要:
钠离子电池(NIBs)因其资源丰富、环境友好等特点被认为是最有望替代锂离子电池(LIBs)的新一代储能系统。然而,钠离子半径大于锂离子,传统锂离子电池负极材料在充放电过程中钠离子嵌入/脱出困难,容易造成材料结构的坍塌。目前,缺乏合适的负极材料仍是限制NIBs大规模应用的主要障碍之一。与传统的NIBs负极材料(碳材料、金属氧化物、金属磷化物等)相比,层状金属二硫化物(TMDs)由于其独特的层状结构可“额外”储存钠离子,并有效地缓解电化学反应中的体积变化已被广泛研究。本文将首先将介绍三种常见关于TMDs材料的合成方法(水/溶剂热法,化学气相沉积法,液相剥离法)。接下来对几种作为NIBs负极的常用TMDs(MoS2、SnS2、WS2、VS2)的研究进展进行综述。最后将对不同TMDs材料合成方法的优缺点进行比较并进一步展望其目前所遇到的挑战及未来的发展前景,为进一步推动TMDs在NIBs的产业化应用提供一些理论参考和科学借鉴。
中图分类号:
成伟翔, 黄兴文, 李越珠, 胡俊祺, 廖松义, 闵永刚. 层状金属二硫化物作为钠离子电池负极的研究进展[J]. 储能科学与技术, 2022, 11(10): 3062-3075.
Weixiang CHENG, Xingwen HUANG, Yuezhu LI, Junqi HU, Songyi LIAO, Yonggang MIN. Advances in layered metal disulfide as anode material for Na-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(10): 3062-3075.
表1
常见钠离子电池电化学性能"
材料种类 | 材料名称 | 电化学性能 |
---|---|---|
TMDs | MoS2 | 56 mAh/g(20 A/g) 394 mAh/g(1 A/g循环350圈)[ |
SnS2 | 343 mAh/g(5 A/g) 396 mAh/g(1 A/g循环500圈)[ | |
WS2 | 194 mAh/g(5 A/g) 182 mAh/g(5 A/g循环6000圈)[ | |
VS2 | 117 mAh/g(20 A/g) 176 mAh/g(10 A/g循环5000圈)[ | |
金属氧化物 | MoO3 | 127 mAh/g(5 A/g) 105 mAh/g(5 A/g循环1200圈)[ |
SnO2 | 203 mAh/g(0.15 A/g) 488 mAh/g(0.02 A/g循环70圈)[ | |
WO3 | 204.6 mAh/g(5 A/g) 306.5 mAh/g(2 A/g循环3000圈)[ | |
金属磷化物 | MoP | 133 mAh/g(4.1 A/g) 307 mAh/g(0.06 A/g循环100圈)[ |
Sn4P3 | 853 mAh/g(0.1 A/g) 718 mAh/g(0.1 A/g循环100圈)[ | |
V4P7 | 90 mAh/g(0.8 A/g) 122 mAh/g(0.2 A/g循环500圈)[ | |
WP | 56 mAh/g(2 A/g) 50 mAh/g(2 A/g循环1000圈)[ |
1 | TANG Y J, ZHENG S S, XU Y X, et al. Advanced batteries based on manganese dioxide and its composites[J]. Energy Storage Materials, 2018, 12: 284-309. |
2 | 曹余良. 钠离子电池机遇与挑战[J]. 储能科学与技术, 2020, 9(3): 757-761. |
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. | |
3 | 王跃生, 容晓晖, 徐淑银, 等. 室温钠离子储能电池电极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 268-284. |
WANG Y S, RONG X H, XU S Y, et al. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 268-284. | |
4 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
5 | PRAMUDITA J C, SEHRAWAT D, GOONETILLEKE D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201602911. |
6 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
7 | 田丽媛, 鞠小霞, 向枫, 等. 钠离子电池金属化合物负极材料的研究进展[J]. 储能科学与技术, 2018, 7(6): 1211-1216. |
TIAN L Y, JU X X, XIANG F, et al. Recent research progress of metal compounds as anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1211-1216. | |
8 | LÜ J J, ZHENG J N, WANG Y Y, et al. A simple one-pot strategy to platinum-palladium@palladium core-shell nanostructures with high electrocatalytic activity[J]. Journal of Power Sources, 2014, 265: 231-238. |
9 | LUO B, HU Y X, ZHU X B, et al. Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability[J]. Journal of Materials Chemistry A, 2018, 6(4): 1462-1472. |
10 | WANG G, ZHANG J, YANG S, et al. Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201702254. |
11 | WANG B, ANG E H, YANG Y, et al. Interlayer engineering of molybdenum trioxide toward high-capacity and stable sodium ion half/full batteries[J]. Advanced Functional Materials, 2020, 30(28): doi: 10.1002/adfm.202001708. |
12 | BISWAL R, NAYAK D, JANAKIRAMAN S, et al. Revisiting and enhancing electrochemical properties of SnO2 as anode for sodium-ion batteries[J]. Journal of Solid State Electrochemistry, 2021, 25(2): 561-573. |
13 | ZENG F Y, CHENG W T, PAN Y, et al. Mono-faceted WO3– x nanorods in situ hybridized in carbon nanosheets for ultra-fast/stable sodium-ion storage[J]. Journal of Materials Chemistry A, 2020, 8(45): 23919-23929. |
14 | ALI G, ANJUM M A R, MEHBOOB S, et al. Sulfur-doped molybdenum phosphide as fast dis/charging anode for Li-ion and Na-ion batteries[J]. International Journal of Energy Research, 2022, 46(6): 8452-8463. |
15 | KIM Y, KIM Y, CHOI A, et al. Tin phosphide as a promising anode material for Na-ion batteries[J]. Advanced Materials, 2014, 26(24): 4139-4144. |
16 | KIM K H, CHOI J, HONG S H. Superior electrochemical sodium storage of V4P7 nanoparticles as an anode for rechargeable sodium-ion batteries[J]. Chemical Communications, 2019, 55(22): 3207-3210. |
17 | PAN Q, CHEN H, WU Z G, et al. Nanowire of WP as a high-performance anode material for sodium-ion batteries[J]. Chemistry, 2019, 25(4): 971-975. |
18 | WANG P P, SUN H Y, JI Y J, et al. Three-dimensional assembly of single-layered MoS2[J]. Advanced Materials, 2014, 26(6): 964-969. |
19 | YANG Y, WANG S T, ZHANG J C, et al. Nanosheet-assembled MoSe2 and S-doped MoSe2– x nanostructures for superior lithium storage properties and hydrogen evolution reactions[J]. Inorganic Chemistry Frontiers, 2015, 2(10): 931-937. |
20 | ZHANG L, WU H B, YAN Y, et al. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting[J]. Energy & Environmental Science, 2014, 7(10): 3302-3306. |
21 | SUN P L, ZHANG W X, HU X L, et al. Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(10): 3498-3504. |
22 | ZHANG S P, CHOWDARI B V R, WEN Z Y, et al. Constructing highly oriented configuration by few-layer MoS2: Toward high-performance lithium-ion batteries and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(12): 12464-12472. |
23 | ZHOU J, WANG L, YANG M, et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metalions[J]. Advanced Materials, 2017, 29(35): doi: 10.1002/adma.201702061. |
24 | LANE C, CAO D X, LI H Y, et al. Understanding phase stability of metallic 1T-MoS2 anodes for sodium-ion batteries[J]. Condensed Matter, 2019, 4(2): 53. |
25 | WANG M, LI G D, XU H Y, et al. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 1003-1008. |
26 | ZENG L, ZHANG L P, LIU X G, et al. Three-dimensional porous graphene supported MoS2 nanoflower prepared by a facile solvothermal method with excellent rate performance and sodium-ion storage[J]. Polymers, 2020, 12(9): 2134. |
27 | HAO X Q, JIANG Z Q, SHANG X N, et al. Understanding the role of graphene intercalation layers on both sides of sandwich structured graphene@MoS2@porous graphene anode in promoting sodium storage performance and stability[J]. Journal of Alloys and Compounds, 2020, 845: doi: 10.1016/j.jallcom.2020.155336. |
28 | LI Y F, MAO H J, ZHENG C, et al. Compositing reduced graphene oxide with interlayer spacing enlarged MoS2 for performance enhanced sodium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2020, 136: doi: 10.1016/j.jpcs.2019.109163. |
29 | NIE W, LIU X L, ZHOU Y T, et al. Graphene-induced three-dimensional network structure to MoS2/graphene composite as an excellent anode for sodium ion batteries[J]. Functional Materials Letters, 2020, 13(1): doi: 10.1142/s1793604719510068. |
30 | ZHANG R, WANG J K, LI C, et al. Facile synthesis of hybrid MoS2/graphene nanosheets as high-performance anode for sodium-ion batteries[J]. Ionics, 2020, 26(2): 711-717. |
31 | REDDY B, PREMASUDHA M, OH K M, et al. Hydrothermal synthesis of MoS2/rGO composite as sulfur hosts for room temperature sodium-sulfur batteries and its electrochemical properties[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102660. |
32 | YU X L, CHEN C M, LI R X, et al. Construction of SnS2@MoS2@rGO heterojunction anode and their half/full sodium ion storage performances[J]. Journal of Alloys and Compounds, 2022, 896: doi: 10.1016/j.jalløcom.2022.162784. |
33 | YUVARAJ S, VEERASUBRAMANI G K, PARK M S, et al. Facile synthesis of FeS2/MoS2 composite intertwined on rGO nanosheets as a high-performance anode material for sodium-ion battery[J]. Journal of Alloys and Compounds, 2020, 821: doi: 10.1016/j.jallcom.2020.162784. |
34 | CUI L S, TAN C L, LI Y, et al. Hierarchical Fe2O3@MoS2/C nanorods as anode materials for sodium ion batteries with high cycle stability[J]. ACS Applied Energy Materials, 2021, 4(4): 3757-3765. |
35 | XIONG K Z, GUO J Z, SHEN K E, et al. Few-layered MoS2 with expanded interplanar spacing strongly encapsulated inside compact carbon spheres by C-S interaction as ultra-stable sodium-ion batteries anode[J]. Journal of Alloys and Compounds, 2021, 858: doi: 10.1016/j.jallcom.2021.157675. |
36 | FAN H L, MAO P C, LAN G X, et al. Ultrathin metallic-phase molybdenum disulfide nanosheets stabilized on functionalized carbon nanotubes via covalent interface interaction for sodium-and lithium-ion storage[J]. ACS Applied Energy Materials, 2021, 4(9): 9440-9449. |
37 | WANG J L, SUN L, GONG Y, et al. A CNT/MoS2@PPy composite with double electron channels and boosting charge transport for high-rate lithium storage[J]. Applied Surface Science, 2021, 566: doi: 10.1016/j.apsusc.2021.150693. |
38 | JI Q Q, LI C, WANG J L, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications[J]. Nano Letters, 2017, 17(8): 4908-4916. |
39 | CHOUDHARY N, LI C, CHUNG H S, et al. High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers[J]. ACS Nano, 2016, 10(12): 10726-10735. |
40 | SOON J M, LOH K P. Electrochemical double-layer capacitance of MoS2 nanowall films[J]. Electrochemical and Solid-State Letters, 2007, 10(11): A250. |
41 | YANG Y, FEI H L, RUAN G D, et al. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J]. Advanced Materials, 2014, 26(48): 8163-8168. |
42 | LIU B, LUO T, MU G Y, et al. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes[J]. ACS Nano, 2013, 7(9): 8051-8058. |
43 | HE J J, ZHANG C J, DU H P, et al. Engineering vertical aligned MoS2 on graphene sheet towards thin film lithium ion battery[J]. Electrochimica Acta, 2015, 178: 476-483. |
44 | ZHANG Q, TAN S J, MENDES R G, et al. Extremely weak van der Waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries[J]. Advanced Materials, 2016, 28(13): 2616-2623. |
45 | ZHANG Z J, ZHAO H L, TENG Y Q, et al. Lithium-ion batteries: Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: Electrochemical application for highly stable and ultrafast lithium storage (adv. energy mater. 7/2018)[J]. Advanced Energy Materials, 2018, 8(7): doi: 10.1002/aenm.201870029. |
46 | COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. |
47 | FENG J, SUN X, WU C Z, et al. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors[J]. Journal of the American Chemical Society, 2011, 133(44): 17832-17838. |
48 | ZHANG X, LAI Z C, TAN C L, et al. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications[J]. Angewandte Chemie International Edition, 2016, 55(31): 8816-8838. |
49 | ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313-318. |
50 | EDA G, FUJITA T, YAMAGUCHI H, et al. Coherent atomic and electronic heterostructures of single-layer MoS2[J]. ACS Nano, 2012, 6(8): 7311-7317. |
51 | EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116. |
52 | JING Y, ORTIZ-QUILES E O, CABRERA C R, et al. Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries[J]. Electrochimica Acta, 2014, 147: 392-400. |
53 | JEONG J M, LEE K G, CHANG S J, et al. Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries[J]. Nanoscale, 2015, 7(1): 324-329. |
54 | LIU Y, WANG W, WANG Y W, et al. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries[J]. Nano Energy, 2014, 7: 25-32. |
55 | WANG W W, GUO S Z, ZHANG P L, et al. Polypyrrole-wrapped SnS2 vertical nanosheet arrays grown on three-dimensional nitrogen-doped porous graphene for high-performance lithium and sodium storage[J]. ACS Applied Energy Materials, 2021, 4(10): 11101-11111. |
56 | LIU Y C, ZHANG N, KANG H Y, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry, 2015, 21(33): 11878-11884. |
57 | ZHAO Y Y, YANG D, HE T Q, et al. Vacancy engineering in VS2 nanosheets for ultrafast pseudocapacitive sodium ion storage[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2021.129715. |
58 | STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites[J]. Energy & Environmental Science, 2014, 7(1): 209-231. |
59 | WANG X F, SHEN X, WANG Z X, et al. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation[J]. ACS Nano, 2014, 8(11): 11394-11400. |
60 | CHOI S H, KO Y N, LEE J K, et al. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties[J]. Advanced Functional Materials, 2015, 25(12): 1780-1788. |
61 | LU Y Y, ZHAO Q, ZHANG N, et al. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres[J]. Advanced Functional Materials, 2016, 26(6): 911-918. |
62 | HU Z, WANG L X, ZHANG K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(47): 12794-12798. |
63 | LI Y F, LIANG Y L, ROBLES HERNANDEZ F C, et al. Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites[J]. Nano Energy, 2015, 15: 453-461. |
64 | XIE X Q, AO Z M, SU D W, et al. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface[J]. Advanced Functional Materials, 2015, 25(9): 1393-1403. |
65 | PAN Q C, ZHANG Q B, ZHENG F H, et al. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries[J]. ACS Nano, 2018, 12(12): 12578-12586. |
66 | LI P, JEONG J Y, JIN B J, et al. Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): doi: 10.1002/aenm.201703300. |
67 | REN W N, ZHANG H F, GUAN C, et al. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability[J]. Advanced Functional Materials, 2017, 27(32): doi: 10.1002/adfm.201702116. |
68 | LI J H, TAO H C, ZHANG Y K, et al. Molybdenum disulfide/reduced graphene oxide nanocomposite with expanded interlayer spacing for sodium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(15): A3685-A3692. |
69 | GONZÁLEZ J R, ALCÁNTARA R, TIRADO J L, et al. Electrochemical interaction of few-layer molybdenum disulfide composites vs sodium: New insights on the reaction mechanism[J]. Chemistry of Materials, 2017, 29(14): 5886-5895. |
70 | CHEN D Y, JI G, DING B, et al. Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material[J]. Industrial & Engineering Chemistry Research, 2014, 53(46): 17901-17908. |
71 | LIU Y C, KANG H Y, JIAO L F, et al. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries[J]. Nanoscale, 2015, 7(4): 1325-1332. |
72 | WANG J W, LIU X H, MAO S X, et al. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction[J]. Nano Letters, 2012, 12(11): 5897-5902. |
73 | QU B H, MA C Z, JI G, et al. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26(23): 3854-3859. |
74 | SUN W P, RUI X H, YANG D, et al. Two-dimensional tin disulfide nanosheets for enhanced sodium storage[J]. ACS Nano, 2015, 9(11): 11371-11381. |
75 | CHEN M L, ZHANG Z Y, SI L P, et al. Engineering of yolk-double shell cube-like SnS@N-S codoped carbon as a high-performance anode for Li-and Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35050-35059. |
76 | JIANG Y, SONG D Y, WU J, et al. Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials[J]. ACS Nano, 2019, 13(8): 9100-9111. |
77 | CUI J, YAO S S, LU Z H, et al. Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors[J]. Advanced Energy Materials, 2018, 8(10): doi: 10.1002/aenm.201702488. |
78 | LIU Y H, YU X Y, FANG Y J, et al. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage[J]. Joule, 2018, 2(4): 725-735. |
79 | WANG Y, KONG D Z, SHI W H, et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries[J]. Advanced Energy Materials, 2016, 6(21): doi: 10.1002/aenm.201601057 |
80 | NANDI D K, YEO S, ANSARI M Z, et al. Thickness-dependent electrochemical response of plasma enhanced atomic layer deposited WS2 anodes in Na-ion battery[J]. Electrochimica Acta, 2019, 322: doi: 10.1016/j.electacta.2019.134766. |
81 | MO L L, GAO M Y, ZHOU G Y, et al. Low-crystallinity tungsten disulfide construction by in situ confinement effect enables ultrastable sodium-ion storage[J]. Journal of Alloys and Compounds, 2022, 900: doi: 10.1016/j.jallcom.2022.163518. |
82 | LI X, SUN Y G, XU X, et al. Lotus rhizome-like S/N-C with embedded WS2 for superior sodium storage[J]. Journal of Materials Chemistry A, 2019, 7(45): 25932-25943. |
83 | CHOI S H, KANG Y C. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres[J]. Nanoscale, 2015, 7(9): 3965-3970. |
84 | KAN M, WANG B, LEE Y H, et al. A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain[J]. Nano Research, 2015, 8(4): 1348-1356. |
85 | MIKHALEVA N S, VISOTIN M A, KUZUBOV A A, et al. VS2/graphene heterostructures as promising anode material for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(43): 24179-24184. |
86 | LI W B, KHEIMEH SARI H M, LI X F. Emerging layered metallic vanadium disulfide for rechargeable metal-ion batteries: Progress and opportunities[J]. ChemSusChem, 2020, 13(6): 1172-1202. |
87 | PUTUNGAN D B, LIN S H, KUO J L. Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching[J]. ACS Applied Materials & Interfaces, 2016, 8(29): 18754-18762. |
88 | SUN R M, WEI Q L, SHENG J Z, et al. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage[J]. Nano Energy, 2017, 35: 396-404. |
89 | XU D M, WANG H W, QIU R Y, et al. Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-storage and robust flexibility for sodium-ion hybrid capacitors[J]. Energy Storage Materials, 2020, 28: 91-100. |
[1] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[2] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[3] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[4] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[5] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[6] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[7] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[8] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[9] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[10] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[11] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[12] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[13] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[14] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[15] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||