储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3062-3075.doi: 10.19799/j.cnki.2095-4239.2022.0160

• 储能材料与器件 • 上一篇    下一篇

层状金属二硫化物作为钠离子电池负极的研究进展

成伟翔1(), 黄兴文1, 李越珠1, 胡俊祺1, 廖松义2(), 闵永刚1,2,3()   

  1. 1.广东工业大学材料与能源学院,广东 广州 510006
    2.仲恺农业工程学院化学化工学院,广东 广州 510225
    3.慧迈材料科技(广东)有限公司,广东 佛山 528200
  • 收稿日期:2022-03-28 修回日期:2022-04-27 出版日期:2022-10-05 发布日期:2022-10-10
  • 通讯作者: 廖松义,闵永刚 E-mail:weixiangcheng2021@126.com;songyiliao@gdut.edu.cn;ygmin@gdut.edu.cn
  • 作者简介:成伟翔(1996—),男,硕士研究生,主要从事锂离子及钠离子电极材料制备,E-mail: weixiangcheng2021@126.com
  • 基金资助:
    广东省引进创新创业团队项目(501170009);国家重点研发计划项目(2020YFB0408100);广东省基础与应用基础研究项目(2021A1515111103);汕尾海上风电实验室科技项目(2021A2407S0010003);佛山市科技创新团队(1920001000108)

Advances in layered metal disulfide as anode material for Na-ion batteries

Weixiang CHENG1(), Xingwen HUANG1, Yuezhu LI1, Junqi HU1, Songyi LIAO2(), Yonggang MIN1,2,3()   

  1. 1.School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    2.College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
    3.Huimai Material Technology(Guangdong)Co. , Ltd. , Foshan 528200, Fujian, China
  • Received:2022-03-28 Revised:2022-04-27 Online:2022-10-05 Published:2022-10-10
  • Contact: Songyi LIAO, Yonggang MIN E-mail:weixiangcheng2021@126.com;songyiliao@gdut.edu.cn;ygmin@gdut.edu.cn

摘要:

钠离子电池(NIBs)因其资源丰富、环境友好等特点被认为是最有望替代锂离子电池(LIBs)的新一代储能系统。然而,钠离子半径大于锂离子,传统锂离子电池负极材料在充放电过程中钠离子嵌入/脱出困难,容易造成材料结构的坍塌。目前,缺乏合适的负极材料仍是限制NIBs大规模应用的主要障碍之一。与传统的NIBs负极材料(碳材料、金属氧化物、金属磷化物等)相比,层状金属二硫化物(TMDs)由于其独特的层状结构可“额外”储存钠离子,并有效地缓解电化学反应中的体积变化已被广泛研究。本文将首先将介绍三种常见关于TMDs材料的合成方法(水/溶剂热法,化学气相沉积法,液相剥离法)。接下来对几种作为NIBs负极的常用TMDs(MoS2、SnS2、WS2、VS2)的研究进展进行综述。最后将对不同TMDs材料合成方法的优缺点进行比较并进一步展望其目前所遇到的挑战及未来的发展前景,为进一步推动TMDs在NIBs的产业化应用提供一些理论参考和科学借鉴。

关键词: 层状金属二硫化物, 钠离子电池, 负极材料

Abstract:

Na-ion batteries (NIBs) are considered the most promising new-generation energy storage systems to replace Li-ion batteries (LIBs) because of their abundant resources and environmental friendliness. However, the radius of sodium ions is larger than that of lithium ions, and traditional Li-ion battery anode materials have difficulties in the insertion/extraction of sodium ions during the charging and discharging process, which easily leads to the collapse of the material structure. Currently, the lack of suitable anode materials is still one of the main obstacles limiting the large-scale application of NIBs. Compared with traditional NIBs anode materials (carbon materials, metal oxides, metal phosphides, etc.), layered metal dichalcogenides (TMDs) have been extensively studied due to their unique layered structures that "extra" store Na ions and effectively mitigate volume changes in electrochemical reactions. In this paper, three common synthesis methods for TMDs materials will firstly be introduced, namely water/solvothermal, chemical vapor deposition, liquid phase exfoliation method. Then, the research progress of several commonly used TMDs (MoS2, SnS2, WS2, VS2) as NIBs anodes is reviewed. Finally, the advantages and disadvantages of different TMDs material synthesis methods will be compared, and the current challenges and future development prospects will be further prospected, so as to provide some theoretical and scientific references for further promoting the industrial application of TMDs in NIBs.

Key words: layered metal disulfide (TMDs), Na-ion batteries (NIBs), anode materials

中图分类号: