储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3051-3061.doi: 10.19799/j.cnki.2095-4239.2022.0480

• 储能材料与器件 • 上一篇    下一篇

高容量富锂锰基正极材料的研究进展

王俊1,2(), 张学全1,2, 刘亚飞1,2(), 陈彦彬1,2()   

  1. 1.北京矿冶科技集团有限公司
    2.北京当升材料科技股份有限公司,北京 100160
  • 收稿日期:2022-08-25 修回日期:2022-09-01 出版日期:2022-10-05 发布日期:2022-10-10
  • 通讯作者: 刘亚飞,陈彦彬 E-mail:wangjun@easpring.com;liuyafei@easpring.com;chenyanbin@e aspring.com
  • 作者简介:王俊(1990—),男,博士,中级工程师,从事锂离子电池正极材料研究开发工作,E-mail:wangjun@easpring.com
  • 基金资助:
    科技部“战略性科技创新合作”重点专项(2020YFE0202800)

Research progress of high capacity Li-Mn-rich cathode materials

Jun WANG1,2(), Xuequan ZHANG1,2, Yafei LIU1,2(), Yanbin CHEN1,2()   

  1. 1.BGRIMM Technology Group
    2.Beijing Easpring Material Technology Co. , Ltd. , Beijing 100160, China
  • Received:2022-08-25 Revised:2022-09-01 Online:2022-10-05 Published:2022-10-10
  • Contact: Yafei LIU, Yanbin CHEN E-mail:wangjun@easpring.com;liuyafei@easpring.com;chenyanbin@e aspring.com

摘要:

层状富锂锰基材料(LMR)凭借其高比容量(>250 mAh/g)和低成本等优点,有望成为新一代锂离子电池用正极材料。从该材料发现至今已有将近30年的时间,却始终没有实现真正商业化应用,主要原因包括:循环过程中,Mn3+迁移进入锂空位,使层状结构向尖晶石结构转变,导致平均放电电压持续降低,造成能量损失严重且给电池管理带来巨大的挑战;Li2MnO3低的电子电导率使LMR材料具有差的倍率性能;较低的电极密度,造成材料的体积能量密度较低;此外,LMR材料需要在高电压下(>4.55 V)才能发挥高容量,但高电压下电解液容易氧化分解,同时伴随着晶格氧被氧化为O2逸出,以上问题严重地影响了其商业化进程。本文基于多年来LMR材料的研究开发成果,综述了近年来LMR材料在充放电机理认识、前驱体工艺路线选择、体相掺杂、表面包覆、液相和气相后处理的作用效果和改性机理,以及O2/O3复合结构、单晶结构等新型特殊结构设计等方面的研究进展,并对LMR材料未来的发展方向和商业化前景进行展望,助力富锂锰基材料的产业化开发。

关键词: 富锂锰基材料, 充放电机理, 改性, 后处理

Abstract:

Layered Li-Mn-rich materials (LMR) are promising to be next generation cathodes for lithium-ion batteries due to their high specific capacity (>250 mAh/g) and low cost. It has been nearly 30 years since the discovery of LMR material, but it has never been commercialized for the following reasons: During the cycling process, Mn3+ migrates into Li sites makes the layered structure transform to spinel structure, resulting in a serious discharge voltage decay, which causing serious energy loss and bringing great challenges to battery management. The low electronic conductivity of Li2MnO3 makes LMR material have poor rate capability and lower electrode density results in lower volume energy density of LMR. In addition, the LMR materials need to be at high voltage (>4.55 V) to show high capacity, but the electrolyte at high voltage is easy to oxidize and decompose, accompanied by the release of lattice oxygen into O2, the above problems seriously affected LMR commercialization process. Based on the research and development results of LMR materials over the years, this paper reviews the research progress of LMR materials in the understanding of charge and discharge mechanism, precursor process route selection, modification effect and mechanism of bulk doping, surface coating, liquid and gas phase post-treatment, and the design of new special structures such as O2/O3 composite structure and single crystal structure. In addition, the future development direction and commercial prospect of LMR materials are prospected to help the industrial development of LMR materials.

Key words: Li-Mn-rich materials, charge and discharge mechanism, modification, post-treatment

中图分类号: