1 |
刘亚飞, 陈彦彬, 李建忠. 锂离子电池用多元正极材料的发展历程[J]. 矿冶, 2018, 27 (Suppl 1): 184-191.
|
2 |
LUO K, ROBERTS M R, HAO R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7): 684-691.
|
3 |
HAN S J, XIA Y G, WEI Z, et al. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge[J]. Journal of Materials Chemistry A, 2015, 3(22): 11930-11939.
|
4 |
SATHIYA M, RAMESHA K, ROUSSE G, et al. High performance Li2Ru1- yMnyO3 (0.2≤y≤0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding[J]. Chemistry of Materials, 2013, 25(7): 1121-1131.
|
5 |
KOGA H, CROGUENNEC L, MÉNÉTRIER M, et al. Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2[J]. Journal of Power Sources, 2013, 236: 250-258.
|
6 |
FREIRE M, KOSOVA N V, JORDY C, et al. A new active Li-Mn-O compound for high energy density Li-ion batteries[J]. Nature Materials, 2016, 15(2): 173-177.
|
7 |
CHEN L, SU Y, CHEN S, et al. Hierarchical Li1.2 Ni0.2 Mn0.6 O2 nanoplates with exposed{010}planes as high-performance cathode material for lithium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(39): 6756-6760.
|
8 |
ZHENG J M, GU M, GENC A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution[J]. Nano Letters, 2014, 14(5): 2628-2635.
|
9 |
LIM S N, SEO J Y, JUNG D S, et al. Rate capability for Na-doped Li1.167Ni0.18Mn0.548Co0.105O2 cathode material and characterization of Li-ion diffusion using galvanostatic intermittent titration technique[J]. Journal of Alloys and Compounds, 2015, 623: 55-61.
|
10 |
LI Q, LI G S, FU C C, et al. K(+)-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10330-10341.
|
11 |
FENG X, GAO Y R, BEN L B, et al. Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries[J]. Journal of Power Sources, 2016, 317: 74-80.
|
12 |
LIU S,LIU Z,SHEN X,et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide[J]. Advanced Energy Materials 2018,8: doi: 10.1002/aenm.201802105.
|
13 |
PARK S H, SUN Y K. Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275- x/2)AlxMn(0.575-x/2)]O2 materials prepared by sol-gel method[J]. Journal of Power Sources, 2003, 119/120/121: 161-165.
|
14 |
JIN X, XU Q J, LIU H M, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26.
|
15 |
LI X, ZHANG K, MITLIN D, et al. Fundamental insight into Zr modification of Li-and Mn-rich cathodes: combined transmission electron microscopy and electrochemical impedance spectroscopy study[J]. Chemistry of Materials, 2018, 30(8): 2566-2573.
|
16 |
YAMAMOTO S, NOGUCHI H, ZHAO W W. Improvement of cycling performance in Ti substituted 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 through suppressing metal dissolution[J]. Journal of Power Sources, 2015, 278: 76-86.
|
17 |
KIM S M, JIN B S, LEE S M, et al. Effects of the fluorine-substitution and acid treatment on the electrochemical performances of 0.3Li2MnO3 ·0.7LiMn0.60Ni0.25Co0.15O2 cathode material for Li-ion battery[J]. Electrochimica Acta, 2015, 171: 35-41.
|
18 |
LIM S N, SEO J Y, JUNG D S, et al. The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F[J]. Journal of Electroanalytical Chemistry, 2015, 740: 88-94.
|
19 |
LEE J, KITCHAEV D A, KWON D H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700): 185-190.
|
20 |
WU Y, MANTHIRAM A. High capacity, surface-modified layered Li[Li(1- x)/3Mn(2- x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss[J]. Electrochemical and Solid-State Letters, 2006,9(5):A221-A224.
|
21 |
ZHAO J Q, AZIZ S, WANG Y. Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 95-104.
|
22 |
WU F, LI N, SU Y F, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials? [J]. Journal of Materials Chemistry, 2012, 22(4): 1489-1497.
|
23 |
ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials[J]. Chemistry of Materials, 2014,26(22):6320-6327.
|
24 |
WU Y, MURUGAN A, MANTHIRAM A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4[J]. Journal of The Electrochemical Society. 2008,155(9):A635-A641.
|
25 |
WANG Q Y, LIU J, MURUGAN A, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. Journal of Materials Chemistry, 2009, 19: 4965-4972.
|
26 |
MIAO X W, NI H, ZHANG H, et al. Li2ZrO3-coated 0.4Li2MnO3 ·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery[J]. Journal of Power Sources, 2014, 264: 147-154.
|
27 |
LIU X, SU Q, ZHANG C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer[J]. ACS Sustainable Chemistry & Engineering, 2015,4(1):255-263.
|
28 |
XIN Y L, QI L Y, ZHANG Y W, et al. Organic solvent-assisted free-standing Li2MnO3 ·LiNi1/3Co1/3Mn1/3O2 on 3D graphene as a high energy density cathode[J]. Chemical Communications (Cambridge, England), 2015, 51(91): 16381-16384.
|
29 |
YU D Y W, YANAGIDA K, NAKAMURA H. Surface modification of Li-excess Mn-based cathode materials[J]. Journal of the Electrochemical Society, 2010, 157(11): A1177.
|
30 |
GUO H C, WEI Z, JIA K, et al. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials[J]. Energy Storage Materials, 2019, 16: 220-227.
|
31 |
QIU B, ZHANG M H, WU L J, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications, 2016, 7: 12108.
|
32 |
ERICKSON E M,SCLAR H,SCHIPPER F, et al. High-temperature treatment of Li-rich cathode materials with ammonia: Improved capacity and mean voltage stability during cycling[J]. Advanced Energy Materials. 2017: doi: 10.1002/aenm.201700708.
|
33 |
CHEN Y F, LIU Y C, ZHANG J C, et al. Constructing O2/O3 homogeneous hybrid stabilizes Li-rich layered cathodes[J]. Energy Storage Materials, 2022, 51: 756-763.
|
34 |
CAO X,SUN J,CHANG Z,et al. Enabling long-term cycling stability within layered Li-rich cathode materials by O2/O3-type biphasic design strategy[J]. Advanced Functional Materials, 2022: doi:10.1002/adfm.202205199.
|
35 |
SUN J,SHENG C,CAO X,et al. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials[J]. Advanced Functional Materials, 2021:doi:10.1002/adfm.202110295.
|
36 |
DING X K, LUO D, CUI J X, et al. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(20): 7778-7782.
|