储能科学与技术 ›› 2019, Vol. 8 ›› Issue (S1): 1-17.doi: 10.19799/j.cnki.2095-4239.2019.0184
刘韬, 邱大平, 夏建年, 邓加红, 陈志宇, 魏谨莹, 李敏, 杨儒
收稿日期:
2019-08-16
修回日期:
2019-08-29
出版日期:
2019-12-05
发布日期:
2019-11-08
通讯作者:
杨儒,教授,研究方向功能陶瓷材料、离子电池正极材料与生物质多孔碳负极材料,E-mail:ruyang@mail.buct.edu.cn
作者简介:
刘韬(1997-),男,本科生,研究方向离子电池正极材料,E-mail:13011181299@163.com
基金资助:
LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru
Received:
2019-08-16
Revised:
2019-08-29
Online:
2019-12-05
Published:
2019-11-08
摘要: 近年来,可充电电池以其成本低廉、操作简单、安全环保等优点引起了不少研究者的关注。与锂离子电池相比,钠、钾、镁、锌和铝等离子电池在成本和安全等方面表现出独特的优势,为电池型储能系统(BESS)和电动汽车(EVs)的发展提供了新的思路。正极材料作为离子电池的重要组成之一,其性能的优劣将直接影响整个电池系统的工作状况。本文将介绍离子电池正极材料在容量、循环寿命和能量密度方面的最新进展,以及离子的储存机制。此外,探讨了材料结构和性能间的关系,总结了各种改善离子储存性能的方法,从而使低成本的离子电池更接近可持续大规模储能系统的应用。
中图分类号:
刘韬, 邱大平, 夏建年, 邓加红, 陈志宇, 魏谨莹, 李敏, 杨儒. 离子电池正极材料的结构与性能[J]. 储能科学与技术, 2019, 8(S1): 1-17.
LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru. Structure and properties of cathode materials for ion batteries[J]. Energy Storage Science and Technology, 2019, 8(S1): 1-17.
[1] ZOU X X, XIONG P X, ZHAO J, et al. Recent research progress in non-aqueous potassium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(39):26495-26506. [2] TARASCON J, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [3] TURCHENIUK K, BONDAREV D, SINGHAL V, et al. Ten years left to redesign lithium-ion batteries reserves of rare metals used in electric-vehicle cells are dwindling, so boost research on iron and silicon alternatives, urge Kostiantyn Turcheniuk and colleagues[J]. Nature, 2018, 559(7715):467-470. [4] ZHU Y, XIE J, PEI A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries[J]. Nature Communications, 2019, 10(1):doi:https://doi.org/10.1038/s41467-019-09924-1. [5] 解建强,陈彦彬,刘亚飞,等.电动汽车动力锂电池正极材料的现状 和发展趋势[J].新材料产业, 2015(11):54-59. XIE Jianqiang, CHEN Yanbin, LIU Yafei, et al. Current status and development trend of cathode materials for electric vehicle lithium battery[J]. New Materials Industry, 2015(11):54-59. [6] LI W J, HAN C, WANG W, et al. Commercial prospects of existing cathode materials for sodium ion storage[J]. Advanced Energy Materials, 2017, 7(24):doi:10.1002/aenm201700274. [7] ZHANG Y, LIU S, JI Y, et al. Emerging nonaqueous aluminum-ion batteries:Challenges, status, and perspectives[J]. Advanced Materials, 2018, 30(38):doi:10.1002/adma.201706310. [8] FANG C, HUANG Y H, ZHANG W X, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(5):doi:10.1002/aenm201501727. [9] XU Y S, DUAN S Y, SUN Y G, et al. Recent developments in electrode materials for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9):4334-4352. [10] LEVI E, MITELMAN A, AURBACH D, et al. Structural mechanism of the phase transitions in the Mg-Cu-Mo6S8 system probed by ex situ synchrotron X-ray diffraction[J]. Chemistry of Materials, 2007, 19(21):5131-5142. [11] YANG Y, SHU D, YU D, et al. Investigations of lithium manganese oxide materials for lithium-ion batteries[J]. Journal of Power Sources, 1997, 65(1/2):227-230. [12] SHU J, SHUI M, HUANG Y, et al. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(7):3323-3328. [13] KIM Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux:Morphology and performance as a cathode material for lithium ion batteries[J]. ACS Applied Materials& Interfaces, 2012, 4(5):2329-2333. [14] HU L H, WU F Y, LIN C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity[J]. Nature Communications, 2013, 4:doi:10.1038/ncomms2705. [15] YANG Y, LI L, FEI H, et al. Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2014, 6(12):9590-9594. [16] HIGGINS T M, PARK S H, KING P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3):3702-3713. [17] ISLAM M S, FISHER C A J. Lithium and sodium battery cathode materials:computational insights into voltage, diffusion and nanostructural properties[J]. Chemical Society Reviews, 2014, 43(1): 185-204. [18] QING R P, SHI J L, XIAO D D, et al. Enhancing the kinetics of Lirich cathode materials through the pinning effects of gradient surface Na+doping[J]. Advanced Energy Materials, 2016, 6(6):doi:10.1002/ aenm201501914. [19] YAN P F, ZHENG J M, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nature Energy, 2018, 3(7):600-605. [20] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50):13186-13200. [21] XIA S X, WU X S, ZHANG Z C, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4):753-785. [22] WANG Y, CAO G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2010, 20(12):2251-2269. [23] ISHIDZU K, OKA Y, NAKAMUR T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2 [J]. Solid State Ionics, 2016, 288, doi:10.1016/j.issi.2016.01.009. [24] ZHAO X, ZHUANG Q C, WU C, et al. Impedance studies on the capacity fading mechanism of Li (Ni0.5Co0.2Mn0.3)O2 cathode with highvoltage and high-temperature[J]. Journal of Electronic Materials, 2015, 162(14):A2770-A2779. [25] LI W D, ASL H Y, XIE Q, et al. Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13):5097-5101. [26] NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered LiNixCoyMnzO2(x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233:121-130. [27] BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnzCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials&Interfaces, 2014, 6(24):22594-22601. [28] WU L J, NAM K W, WANG X J, et al. Structural origin of overchargeinduced thermal instability of Ni-containing layered-cathodes for highenergy-density lithium batteries[J]. Chemistry of Materials, 2011, 23(17):3953-3960. [29] JIA X B, YAN M, ZHOU Z Y, et al. Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries[J]. Electrochimica Acta, 2017, 254:50-58. [30] WU F, LI Q, CHEN L, et al. Use of Ce to reinforce the interface of Nirich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage[J]. ChemSusChem, 2019, 12(4):935-943. [31] XUE L L, LI Y J, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage[J]. Journal of Alloys and Compounds, 2018, 748:561-568. [32] BINDER J O, CULVER S P, PINEDO R, et al. Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2018, 10(51):44452-44462. [33] ZHANG B, LI L J, ZHENG J C. Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Journal of Alloys and Compounds, 2012, 520:190-194. [34] MYUNG S T, LEE K S, CHONG S Y, et al. Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2[J]. The Journal of Physical Chemistry C, 2014, 114(10):4710-4718. [35] CHO J, KIM T G, KIM C, et al. Comparison of Al2O3- and AlPO4- coated LiCoO2 cathode materials for a Li-ion cell[J]. Journal of Power Sources, 2005, 146:58-64. [36] KONG J Z, REN C, TAI G A, et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Journal of Power Sources, 2014, 266:433-439. [37] XIONG X H, DING D, WANG Z X, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole[J]. Journal of Solid State Electrochemistry, 2014, 18(9):2619-2624. [38] SHIN S S, SUN Y K, AMINE K. Synthesis and electrochemical properties of Li[Li(1-2x)/3NixMn(2-x)/3]O2 as cathode materials for lithium secondary batteries[J]. Journal of Power Sources, 2002, 112:634-638. [39] LU Z, CHEN Z, DAHN J. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0 [41] WANG J, HE X, PAILLARD E, et al. Lithium-and manganese-rich oxide cathode materials for high-energy lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(21):doi:10.1002/aenm.201600906. [42] ARMSTRONG A R, HOLZAPFEL M, NOVAK P J, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26):8694-8698. [43] 张和,张梦诗,廖世军.富锂三元层状正极材料的研究进展[J].应用 化学, 2018, 35(11):1277-1288. ZHANG He, ZHANG Mengshi, LIAO Shijun. Research progress of lithium-rich layered cathode materials[J]. Chinese Journal of Applied Chemistry, 2018, 35(11):1277-1288 [44] SHANG B, NING F, LI B, et al. Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium[J]. ACS Applied Materials&Interfaces, 2018, 10(25): 21349-21355. [45] WANG G, YI L, YU R, et al. Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(30):25358-25368. [46] HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides:Powerful cathodes for Na-ion batteries[J]. Energy&Environmental Science, 2015, 8(1):81-102. [47] ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes:Overcoming the challenges of sodium ion batteries[J]. Energy&Environmental Science, 2017, 10(5):1051-1074. [48] BILLAUD J, SINGH G, ARMSTRONG A R, et al. Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2):A high capacity cathode for sodium-ion batteries[J]. Energy&Environmental Science, 2014, 7(4):1387-1391. [49] WANG P F, YAO H R, LIU X Y, et al. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials, 2017, 29(19):doi:10.1002/ adma.201700210. [50] GUO S H, LIU P, YU H J, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(54):5894-5899. [51] OH S M, MYUNG S T, HWANG J Y, et al. High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries[J]. Chemistry of Materials, 2014, 26(21):6165-6171. [52] DENG J Q, LUO W B, LU X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode[J]. Advanced Energy Materials, 2018, 8(5):doi:10.1002/ odma.201701610. [53] YU H, GOU S, ZHU Y, et al. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries[J]. Chemical Communications, 2014, 50(4):457-459. [54] YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat. Mater., 2012, 11(6):512-517. [55] ZHAO J, ZHAO L W, DIMOV N, et al. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries[J].Journal of the Electrochemical Society, 2013, 160(5):A3077-A3081. [56] HASA I, BUCHHOLZ D, PASSERINI S, et al. High performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2 0 1 4, 4(1 5):doi:10.1002/ aenm.201400083. [57] HAN H M, GONZALO E, SHARMA N, et al. High-performance P2- phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries[J]. Chemistry of Materials, 2016, 28(1):106-116. [58] JIANG X, LIU S, XU H, et al. Tunnel-structured Na0.54Mn0.50Ti0.51O2 and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries[J]. Chemical Communications, 2015, 51(40): 8480-8483. [59] TINGRU C, TIAN S, ZHENGUO W, et al. Cu2+ Dual-doped layertunnel hybrid Na0.6Mn1-xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property, and air stability[J]. ACS Applied Materials&Interfaces, 2018, 10(12):10147-10156. [60] 方永进,陈重学,艾新平,等.钠离子电池正极材料研究进展[J].物理 化学学报, 2017, 33(1):211-241. FANG Yongjin, CHEN Zhongxue, AI Xinping, et al. Research progress in cathode materials for sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(1):211-241. [61] MA J, BO S H, WU L, et al. Ordered and disordered polymorphs of Na (Ni2/3Sb1/3)O2:honeycomb-ordered cathodes for Na-ion batteries[J]. Chemistry of Materials, 2015, 27(7):2387-2399. [62] YOU Y, KIM S O, MANTHIRAM A. A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition[J]. Advanced Energy Materials, 2017, 7(5):doi:10.1002/ aenm.201601698. [63] BARKER J, SAIDI M Y, SWOYER J L. A sodium-ion cell based on the fluorophosphate compound NaVPO4F[J]. Electrochemical and Solid-State Letters, 2003, 6(1):A1-A4. [64] ONG S P, CHEVRIER V L, HAUTIER G, et al. Stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy&Environmental Science, 2011, 4(9):3680-3688. [65] ZAGHIB K, TROTTIER J, HOVINGTON P, et al. Characterization of Na-based phosphate as electrode materials for electrochemical cell[J]. Journal of Power Sources, 2011, 196(2):9612-9617. [66] LIU Y C, ZHANG N, WANG F, et al. Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28(30): doi:10.1002/aenm.201801917. [67] LIM S Y, KIM H, SHAKOOR R A, et al. Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode:A combined experimental and theoretical study[J]. Journal of the Electrochemical Society, 2012, 159(9): A1393-A1397. [68] JIANG H F, CAI X Y, WANG Z, et al. Selection of graphene dopants for Na3V2(PO4)3 graphene composite as high rate, ultra long-life sodium-ion battery cathodes[J]. Electrochimica Acta, 2019, 306:558-567. [69] BARPANDA P, YE T, NISHIMURA S, et al. Sodium iron pyrophosphate:A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications, 2012, 24:116-119. [70] CLARK J M, BARPANDA P, YAMADA A, et al. Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7:Diffusion behavior for high rate performance[J]. Journal of Materials Chemistry A, 2014, 2(30):11807-11812. [71] CHEN M Z, CHEN L N, HU Z, et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries[J]. Advanced Materials, 2017, 29(21):doi:10.1002/adma.201605535. [72] KAWABE Y, YABUUCHI N, KAJIYAMA M, et al. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries[J]. Electrochemistry Communications, 2011, 13(11): 1225-1228. [73] ZHAO J, GAO Y, LIU Q, MENG X, et al. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications[J]. Chemistry-A European Journal, 2018, 24(12):2913-2919. [74] 王凡凡,刘晓斌,陈龙,等.室温钠离子电池关键材料研究进展[J].电 化学, 2019, 25(1):55-76. WANG Fanfan, LIU Xiaobin, CHEN Long, et al. Research progress of key materials for room temperature sodium ion batteries[J]. Electrochemistry, 2019, 25(1):55-76. [75] LU Y, WANG L, CHENG J, et al. Prussian blue:A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52):6544-6546. [76] SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7):2658-2664. [77] FENG F, CHEN S, LIAO X Z, et al. Hierarchical hollow Prussian blue rods synthesized via self-sacrifice template as cathode for high performance sodium ion battery[J]. Small Methods, 2018:doi:10.1002/ smtd.201800259. [78] LIU Y, HE D, HAN R, et al. Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries[J]. Chemical Communications, 2017, 53(40): 5569-5572. [79] LIANG Y, TAO Z, CHEN J. Organic electrode materials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2012, 2(7):742-769. [80] FANG C, HUANG Y, YUAN L, et al. A metal-organic compound as cathode material with superhigh capacity achieved by reversible cationic and anionic redox chemistry for high-energy sodium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(24): 6793-6797. [81] LUO W, ALLEN M, RAJ U, et al. An organic pigment as a highperformance cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4(25):doi:10.1002/aenm.201400554. [82] ZHAO Q L, WHITTAKER A K, ZHAO X S. Polymer electrode materials for sodium-ion batteries[J]. Materials, 2018, 11(2):doi: 10.3390/mall.122567. [83] EFTEKHARI A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2):221-228. [84] PEI Y, MU C, LI H, et al. Low-cost K4Fe(CN)6 as a high-voltage cathode for potassium-ion batteries[J]. ChemSusChem, 2018, 11(8): 1285-1289. [85] SU D, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29:doi:10.1002/adma.201604007. [86] PADIGI P, THIEBES J, SWAN M, et al. Prussian green:A high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166:32-39. [87] CHONG S, CHEN Y, ZHENG Y, et al. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(43):22465-22471. [88] NIKITINA V A, KUZOVCHIKOV S M, FEDOTOV S S, et al. Effect of the electrode/electrolyte interface structure on the potassiumion diffusional and charge transfer rates:Towards a high voltage potassium-ion battery[J]. Electrochimica Acta, 2017, 258:814-824. [89] SADA K, SENTHILKUMAR B, BARPANDA P. Potassium-ion intercalation mechanism in layered Na2Mn3O7[J]. ACS Applied Energy Materials, 2018, 1(10):5410-5416. [90] KIM H, SEO D H, KIM J C, et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode[J]. Advanced Materials, 2017, 29(37):doi:10.1002/adma.201702480. [91] ZHAO S Q, YAN K, MUNROE P, et al. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassiumion batteries[J]. Advanced Energy Materials, 2019, 9(10):doi:10.1002/ aenm.201803757. [92] GAO A, LI M, GUO N N, et al. K-birnessite electrode obtained by ion exchange for potassium-ion batteries:Insight into the concerted ionic diffusion and K storage mechanism[J]. Advanced Materials, 9(1):doi: 10.1002/adma.201802739. [93] EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(5):4404-4419. [94] LEE C Y, MARSCHILOK A C, SUBRAMANIAN A, et al. Synthesis and characterization of sodium vanadium oxide gels:The effects of watern and sodiumx content on the electrochemistry of NaxV2O5·nH2O[J]. Physical Chemistry Chemical Physics, 2011, 13(40): 18047-18054. [95] MORETTI A, MARONI F, OSADA I, et al. V2O5 aerogel as a versatile cathode material for lithium and sodium batteries[J]. ChemElectroChem, 2015, 2(4):529-537. [96] CLITES M, HART J L, TAHERI M L, et al. Chemically preintercalated bilayered KxV2O5·nH2O nanobelts as a high-performing cathode material for K-ion batteries[J]. ACS Energy Letters, 2018, 3(3):562-567. [97] TIAN B, TANG W, SU C, et al. Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion[J]. ACS Applied Materials&Interfaces, 2018, 10(1):642-650. [98] HAN J, LI G, LIU F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries[J]. Chemical Communications, 2017, 53(11):1805-1808. [99] PARK W B, HAN S C, PARK C S, et al. KVP2O7 as a robust high-energy cathode for potassium-ion batteries:Pinpointed by a full screening of the inorganic registry under specific search conditions[J]. Advanced Energy Materials, 2018, 8(11):doi:10.1002/ adma.201703099. [100] WU X, JIAN Z, LI Z, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77:54-57. [101] BIE X, KUBOTA K, HOSAKA T, et al. A novel K-ion battery: Hexacyanoferrate (ii)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9):325-4330. [102] DENG T, FAN X, CHEN J, et al. Layered P2-type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(28):doi: 10.1002/adfm.201800219. [103] WANG X, XU X, NIU C, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano Letters, 2017, 17(1):544-550. [104] CHEN H, ARMAND M, DEMAILLY G, et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries[J]. ChemSusChem, 2008, 1(4):348-355. [105] CHEN Y, LUO W, CARTER M, et al. Organic electrode for nonaqueous potassium-ion batteries[J]. Nano Energy, 2015, 18:205-211. [106] MA J, ZHOU E, FAN C, et al. Endowing CuTCNQ with a new role:A high-capacity cathode for K-ion batteries[J]. Chemical Communications, 2018, 54:5578-5581. [107] JIAN Z, LIANG Y, RODRÍGUEZ-PÉREZ I A, et al. Poly (anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71:5-8. [108] FU Q, SARAPULOVA A, TROUILLET V, et al. In operando synchrotron diffraction and in operando X-ray absorption spectroscopy investigations of orthorhombic V2O5 nanowires as cathode materials for Mg-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(6):2305-2315. [109] PERERA S D, ARCHER R B, DAMIN C A, et al. Controlling interlayer interactions in vanadium pentoxide-poly (ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage[J]. Journal of Power Sources, 2017, 343(1):580-591. [110] XU Y N, DENG X W, LI Q D, et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries[J]. Chem, 2019, 5(5):1194-1209. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[8] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[9] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[10] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[11] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[12] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[13] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[14] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[15] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||