[1] 朱伟杰,史尤杰,雷博.锂离子电池储能系统BMS的功能安全分析与设计[J/OL].储能科学与技术,[2019-09-25] . http://kns.cnki.net/kcms/detail/10.1076.tk.20190919.1535.001.html. ZHU Weijie, SHI youjie, LEI Bo. Functional safety analysis and design of bms for lithium-ion battery energy storage system[J/OL]. Energy Storage Science and Technology,[2019-09-25] . http://kns.cnki.net/kcms/detail/10.1076.tk.20190919.1535.001.html. [2] FOAD H. GANDOMAN, JORIS J, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles:Basics, progress, and challenges[J]. Applied Energy, 2019, doi:10.1016/j.apenergy.2019.113343. [3] 张向倩,高月,黄飞.锂离子动力电池安全问题及防控技术分析[J].现代化工, 2019, 39(8):7-10. ZHANG Xiangqian, GAO Yue, HUANG Fei. Safety problems and prevention and control technology analysis of lithium-ion power battery[J]. Modern Chemical, 2019, 39(8):7-10. [4] BOTTE G G, JOHNSON B A,WHITE R E. Influence of some design variables on the thermal behavior of a lithium-ion cell[J]. J. Electrochemical Society, 1999, 146:3. [5] FORGEZ C, DO D V, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9):2961-2968. [6] FANG W, KWON O J, WANG C. Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research, 2010, 34(2):107-115. [7] 虢放,薛明喆,张存满.电极厚度对锂离子电池电化学性能的影响[J].电源技术, 2017, 41(8):1114-1117,1123. GUO Fang, XUE Mingzhe, ZHANG Cunman. Effects of electrode thickness on electrochemical characteristics of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2017, 41(8):1114-1117,1123. [8] HOSSEINZADEH E, MARCO J, JENNINGS P. Electrochemicalthermal modelling and optimization of lithium-ion battery design parameters using analysis of variance[J]. Energies, 2017, 10(9):doi:10.3390/en10091278. [9] 李小爽.动力锂离子电池温度场热分析[J].电源技术, 2014, 38(4):636-639. LI Xiaoshuang. Thermal analysis of temperature field of lithium-ion battery[J]. Chinese Journal of Power Sources, 2014, 38(4):636-639. [10] 彭敏,申文静,罗兆东.层叠式锂离子电池二维热模型研究[J].电源技术, 2018, 42(9):1312-1315. PENG Min, SHEN Wenjing, LUO Zhaodong. Two-dimensional thermal modeling for laminated lithium ion battery[J]. Chinese Journal of Power Sources, 2018, 42(9):1312-1315. [11] 张立军,程洪正.基于相似理论的锂电池三维电化学跨尺度建模[J].同济大学学报(自然科学版), 2016, 44(4):605-613. ZHANG Lijun, CHENG Hongzheng. Three-dimensional electrochemical cross-scale modeling of lithium batteries based on similarity theory[J]. Journal of Tongji University (Natural Science Edition), 2016, 44(4):605-613. [12] 肖忠良,池振振,宋刘斌.动力锂离子电池仿真模型研究进展[J].化工进展, 2019, 38(8):3604-3611. XIAO Zhongliang, CHI Zhenzhen, SONG Liubin, et al. Research progress on simulation models of power lithium-ion batteries[J]. Chemical Industry and Engineering Progress 2019, 38(8):3604-3611. [13] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5. [14] KIM G H, PESARAN A. Battery thermal management system design modeling[C]//The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition. Yokohama, Japan:Japan Automobile Research Institute, 2006. [15] GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemicalthermal model of pouch-type lithium-ion batteries[J]. Electrochemical Acta, 2017:S0013468617314020. [16] 张志超,郑莉莉,杜光超,等.基于多尺度锂离子电池电化学及热行为仿真实验研究[J/OL].储能科学与技术,[2019-09-25] . https://doi.org/10.19799/j.cnki.2095-4239.2019.0185. ZHANG Zhichao, ZHENG Lili, DU Guangchao, et al. Based on the experimental study of electrochemistry and thermal behavior of multi-scale lithium-ion batteries[J/OL]. Energy Storage Science and Technology,[2019-09-25] . https://doi.org/10.19799/j.cnki.2095-4239.2019.0185. [17] 鄂加强,龙艳平,王曙辉,等.动力锂离子电池充电过程热模拟及影响因素灰色关联分析[J].中南大学学报(自然科学版), 2013(3):998-1005. E Jiaqiang, LONG Yanping, WANG Shuhui, et al. Thermal simulation on dynamic lithium-ion battery during charge and its grey relational analysis[J]. Journal of Central South University (Natural Science Edition), 2013(3):998-1005. [18] GOUTAM S, NIKOLIAN A, JAGUEMONT J, et al. Three-dimensional electro-thermal model of Li-ion pouch cell:Analysis and comparison of cell design factors and model assumptions[J]. Applied Thermal Engineering, 2017, 126:796-808. [19] PING P, WANG Q, CHUNG Y, et al. Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions[J]. Applied Energy, 2017, 205:1327-1344. [20] RAO Z, WANG S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4554-4571. [21] GUO G, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8):2393-2398. [22] TROXLER Y, WU B, MARINESCU M, et al. The effect of thermal gradients on the performance of lithium-ion batteries[J]. Journal of Power Sources, 2014, 247:1018-1025. [23] 李顶根,邹时波,郑军林,等.锂离子动力电池针刺滥用热失控仿真计算[J].汽车工程学报, 2018, 8(4):259-267. LI Dinggen, ZOU Shibo, ZHENG Junlin, et al. Simulation of nail penetration thermal runaway in lithium-ion power battery[J]. Chinese Journal of Automotive Engineering, 2018, 8(4):259-267. [24] 刘冰河.含硅锂离子电池多尺度多物理场数值模型[C]//2018年全国固体力学学术会议摘要集(下),哈尔滨, 2018. LIU Binhe. Multi-scale and multi-physical field numerical model for lithium-ion batteries containing silicon[C]//Summary of the 2018 National Conference on Solid Mechanics (Part II), Harbin, 2018. [25] MA T Y, CHEN L D, LIU S Q, et al. Mechanics-morphologic coupling studies of commercialized lithium-ion batteries under nail penetration test[J/OL]. Journal of Power Sources, 2019, https://doi.org/10.1016/j.jpowsour.2019.226928. |