储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3423-3438.doi: 10.19799/j.cnki.2095-4239.2022.0602
季洪祥(), 武怿达, 金周, 田孟羽, 郝峻丰, 詹元杰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2022-10-17
出版日期:
2022-11-05
发布日期:
2022-11-09
通讯作者:
黄学杰
E-mail:sdujhx@163.com;xjhuang@iphy.ac.cn
作者简介:
季洪祥(1997—),男,博士研究生,研究方向为锂离子电池正极材料,E-mail:sdujhx@163.com;
Hongxiang JI(), Yida WU, Zhou JIN, Mengyu TIAN, Junfeng HAO, Yuanjie ZHAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-10-17
Online:
2022-11-05
Published:
2022-11-09
Contact:
Xuejie HUANG
E-mail:sdujhx@163.com;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2022年8月1日至2022年9月30日上线的锂电池研究论文,共有4656篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元、高电压钴酸锂和镍锰酸锂的表面改性和体相掺杂,以及其在长循环过程中或高电压下所发生的表面和体相的结构演变。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用。金属锂负极的研究包含金属锂的表面修饰和三维结构设计。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注正极中离子、电子传输能力的提升。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括电极结构设计和人造SEI层的构建。测试技术涵盖了锂沉积、硅负极演化和三元正极产气等方面。理论模拟工作侧重于固态电池中固体电解质及其与电极界面的稳定性研究。
中图分类号:
季洪祥, 武怿达, 金周, 田孟羽, 郝峻丰, 詹元杰, 闫勇, 岑官骏, 乔荣涵, 申晓宇, 朱璟, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.08.01—2022.09.30)[J]. 储能科学与技术, 2022, 11(11): 3423-3438.
Hongxiang JI, Yida WU, Zhou JIN, Mengyu TIAN, Junfeng HAO, Yuanjie ZHAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2022 to Sept. 30, 2022)[J]. Energy Storage Science and Technology, 2022, 11(11): 3423-3438.
1 | JEONG S, YOUNG PARK S, SO B, et al. Reinforcement of binder adhesion for nickel-rich layered oxide in lithium-ion batteries using perfluorinated molecular surface modification[J]. Chemical Engineering Journal, 2022, 448: doi: 10.1016/j.cej.2022.137654. |
2 | FAN T J, KAI W, HARIKA V K, et al. Operating highly stable LiCoO2 cathodes up to 4.6 V by using an effective integration of surface engineering and electrolyte solutions selection[J]. Advanced Functional Materials, 2022, 32(33): doi: 10.1002/adfm.202204972. |
3 | XIN F X, GOEL A, CHEN X B, et al. Electrochemical characterization and microstructure evolution of Ni-rich layered cathode materials by niobium coating/substitution[J]. Chemistry of Materials, 2022, 34(17): 7858-7866. |
4 | WANG L G, LEI X C, LIU T C, et al. Regulation of surface defect chemistry toward stable Ni-rich cathodes[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(19): doi: 10.1002/adma.202200744. |
5 | NI L S, GUO R T, DENG W T, et al. Single-crystalline Ni-rich layered cathodes with super-stable cycling[J]. Chemical Engineering Journal, 2022, 431: doi: 10.1016/j.cej.2021.133731. |
6 | KIM J M, XU Y B, ENGELHARD M H, et al. Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17405-17414. |
7 | HUANG W Y, YANG L Y, CHEN Z F, et al. Elastic lattice enabling reversible tetrahedral Li storage sites in a high-capacity manganese oxide cathode[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(30): doi: 10.1012/adma.202202745. |
8 | AHN J, HA Y, SATISH R, et al. Exceptional cycling performance enabled by local structural rearrangements in disordered rocksalt cathodes[J]. Advanced Energy Materials, 2022, 12(27): doi: 10.1002/aenm.202200426. |
9 | PARK G T, NAMKOONG B, KIM S B, et al. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries[J]. Nature Energy, 2022: 1-9. |
10 | FENG Z J, SONG H, SU W, et al. Improved electrochemical kinetics and interfacial stability of cobalt-free lithium-rich layered oxides via thiourea treatment[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.138114. |
11 | JONDERIAN A, JIA S P, YOON G, et al. Accelerated development of high voltage Li-ion cathodes[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202201704. |
12 | REN Y, XIANG L Z, YIN X C, et al. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(16): doi: 10.1002/adfm.202110046. |
13 | ZHOU C Y, GONG X Z, FENG Y K, et al. Constructing an artificial boundary to regulate solid electrolyte interface formation and synergistically enhance stability of nano-Si anodes[J]. Journal of Colloid and Interface Science, 2022, 619: 158-167. |
14 | BIAN C C, FU R S, SHI Z P, et al. Mg2SiO4/Si-coated disproportionated SiO composite anodes with high initial coulombic efficiency for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15337-15345. |
15 | ATTIA E, HASSAN F, LI M, et al. A robust bundled and wrapped structure design of ultrastable silicon anodes for antiaging lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(5): 5540-5550. |
16 | DENG Y L, GAO J, WANG M, et al. Homogenizing the Li-ion flux by multi-element alloying modified for 3D dendrite-free lithium anode[J]. Energy Storage Materials, 2022, 48: 114-122. |
17 | CHEN Z R, LIANG Z T, ZHONG H Y, et al. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2022, 7(8): 2761-2770. |
18 | LUO L L, XIA S X, ZHANG X, et al. In situ construction of efficient interface layer with lithiophilic nanoseeds toward dendrite-free and low N/P ratio Li metal batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(8): doi: 10.1002/advs.202104391. |
19 | SHENG O W, HU H L, LIU T F, et al. Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(14): doi: 10.1002/adfm.202111026. |
20 | ZHOU S P, DENG K R, XU Z L, et al. Highly conductive self-healing polymer electrolytes based on synergetic dynamic bonds for highly safe lithium metal batteries[J]. Chemical Engineering Journal, 2022, 442: doi: 10.1016/j.cej.2022.136083. |
21 | ZHENG Y, YANG N, GAO R, et al. "tree-trunk" design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022: doi: 10.1002/adma.202203417. |
22 | WANG Q Y, XU X Q, HONG B, et al. Molecular engineering of a gel polymer electrolyte via in situ polymerization for high performance lithium metal batteries[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131331. |
23 | LI Z, FU J L, ZHENG S, et al. Self-healing polymer electrolyte for dendrite-free Li metal batteries with ultra-high-voltage Ni-rich layered cathodes[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, 18(17): doi: 10.1002/smll.202200891. |
24 | GUO C X, CAO Y F, LI J F, et al. Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries[J]. Applied Energy, 2022, 323: doi: 10.1016/j.apenergy.2022.119571. |
25 | CHENG Z Z, LU L P, ZHANG S Y, et al. Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state[J]. Nano Research, 2022: 1-8. |
26 | FU Y, CHEN Y F, ZHOU L M. Comonomer-tuned gel electrolyte enables ultralong cycle life of solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 40871-40880. |
27 | HUANG Z X, XIE Z H, ZHANG Z P, et al. Highly ionic conductive, self-healable solid polymer electrolyte based on reversibly interlocked macromolecule networks for lithium metal batteries workable at room temperature[J]. Journal of Materials Chemistry A, 2022, 10(36): 18895-18906. |
28 | YANG L X, LUO D, ZHENG Y, et al. Heterogeneous nanodomain electrolytes for ultra-long-life all-solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2022, 32(36): doi: 10.1002/adfm.202204778. |
29 | ZHAI Y F, HOU W S, TAO M M, et al. Enabling high-voltage "superconcentrated ionogel-in-ceramic" hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(39): doi: 10.1002/adma.202205560. |
30 | WU Z K, CHEN S Q, YU C, et al. Engineering high conductive Li7P2S8I via Cl-doping for all-solid-state Li-S batteries workable at different operating temperatures[J]. Chemical Engineering Journal, 2022, 442: doi: 10.1016/j.cej.2022.136346. |
31 | WANG G D, DONG P P, LIANG B, et al. An amorphous superionic conductor Li3PS4-x LiBr with high conductivity and good air stability by halogen incorporation[J]. Journal of the American Ceramic Society, 2022, 105(12): 7751-7759. |
32 | CHEN Z, ZHANG H R, XU H T, et al. In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133589. |
33 | CHEN J, GAO Y Y, SHI L, et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability[J]. Nature Communications, 2022, 13: 4868. |
34 | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
35 | AN K, TRAN Y H T, KWAK S, et al. Design of fire-resistant liquid electrolyte formulation for safe and long-cycled lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(48): doi: 10.1002/adfm.202106102. |
36 | ZHANG J, SHI J Y, GORDON L W, et al. Performance leap of lithium metal batteries in LiPF6 carbonate electrolyte by a phosphorus pentoxide acid scavenger[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36679-36687. |
37 | LIU G, CAO Z, WANG P, et al. Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(26): doi: 10.1002/advs.202201893. |
38 | ZHOU P, XIA Y C, WU Y H, et al. Novel urea-based molecule functioning as a solid electrolyte interphase enabler and LiPF6 decomposition inhibitor for fast-charging lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38921-38930. |
39 | ZHANG L H, MIN F Q, LUO Y, et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte[J]. Nano Energy, 2022, 96: doi: 10.1016/j.nanoen.2022.107122. |
40 | RINKEL B L D, VIVEK J P, GARCIA-ARAEZ N, et al. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(8): 3416-3438. |
41 | LU D, LEI X C, WENG S T, et al. A self-purifying electrolyte enables high energy Li ion batteries[J]. Energy & Environmental Science, 2022, 15(8): 3331-3342. |
42 | LI G J, FENG Y, ZHU J Y, et al. Achieving a highly stable electrode/electrolyte interface for a nickel-rich cathode via an additive-containing gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36656-36667. |
43 | DAI P P, KONG X B, YANG H Y, et al. Synergistic effect of dual-anion additives promotes the fast dynamics and high-voltage performance of Ni-rich lithium-ion batteries by regulating the electrode/electrolyte interface[J]. ACS Applied Materials & Interfaces, 2022, 14(35): 39927-39938. |
44 | CHUNG G J, TRAN Y H T, HAN J, et al. Novel additives-package to mitigate the failure modes of high-capacity LiNi0.82Co0.11Mn0.07O2 -based lithium-ion battery[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.137288. |
45 | CHEN Y Q, HE Q, MO Y, et al. Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811// graphite pouch cell at 60 ℃[J]. Advanced Energy Materials, 2022, 12(33): doi: 10.1002/aenm.202201631. |
46 | LIN J L, YANG Y X, LIN X Y, et al. Insight into the improved performances of Ni-rich/graphite cells by 1, 3, 5-trimethyl-1, 3, 5-tris(3, 3, 3-trifluoropropyl) cyclotrisiloxane as an electrolyte additive[J]. ACS Applied Energy Materials, 2022, 5(9): 11684-11693. |
47 | MOSALLANEJAD B, JAVANBAKHT M, SHARIATINIA Z, et al. Phenyl vinylsulfonate, a novel electrolyte additive to improve electrochemical performance of lithium-ion batteries[J]. Energies, 2022, 15(17): 6205. |
48 | TIAN M Y, BEN L B, YU H L, et al. Designer cathode additive for stable interphases on high-energy anodes[J]. Journal of the American Chemical Society, 2022, 144(33): 15100-15110. |
49 | JIANG S, XU X, YIN J Y, et al. Multifunctional electrolyte additive for Bi-electrode interphase regulation and electrolyte stabilization in Li/LiNi0.8Co0.1Mn0.1O2 batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38758-38768. |
50 | WEN Z Y, WU F, LI L, et al. Electrolyte design enabling stable solid electrolyte interface for high-performance silicon/carbon anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38807-38814. |
51 | LIU G P, GAO J, XIA M, et al. Strengthening the interfacial stability of the silicon-based electrode via an electrolyte Additive-Allyl phenyl sulfone[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38281-38290. |
52 | XU H J, CAO G Q, SHEN Y L, et al. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes[J]. Energy & Environmental Materials, 2022, 5(3): 852-864. |
53 | SHIN H S, JEONG W, RYU M H, et al. Electrode-to-electrode monolithic integration for high-voltage bipolar solid-state batteries based on plastic-crystal polymer electrolyte[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133753. |
54 | SHIN D O, KIM H, JUNG S, et al. Electrolyte-free graphite electrode with enhanced interfacial conduction using Li+-conductive binder for high-performance all-solid-state batteries[J]. Energy Storage Materials, 2022, 49: 481-492. |
55 | SHIMIZU R, CHENG D Y, WEAVER J L, et al. Unraveling the stable cathode electrolyte interface in all solid-state thin-film battery operating at 5 V[J]. Advanced Energy Materials, 2022, 12(31): doi: 10.1002/aenm.202201119. |
56 | CHENG Z, PAN H, LI F, et al. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy[J]. Nature Communications, 2022, 13: 125. |
57 | GREGORY G L, GAO H, LIU B Y, et al. Buffering volume change in solid-state battery composite cathodes with CO2-derived block polycarbonate ethers[J]. Journal of the American Chemical Society, 2022, 144(38): 17477-17486. |
58 | KWON T Y, KIM K T, OH D Y, et al. Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure[J]. Energy Storage Materials, 2022, 49: 219-226. |
59 | WU L L, XUE B, WANG H J, et al. Self-densified ultrathin solid electrolyte membrane fabricated from monodispersed sulfide electrolyte nanoparticles[J]. Journal of the American Ceramic Society, 2022, 105(12): 7344-7354. |
60 | LEE J, CHOI S H, IM G, et al. Room-temperature anode-less all-solid-state batteries via the conversion reaction of metal fluorides[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(40): doi: 10.1002/adma.202203580. |
61 | ARIBIA A, SASTRE J, CHEN X B, et al. Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5-4.7 V[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm. 202201750. |
62 | SHEN L, ZHAO C, WENG W, et al. In situ-formed LiF-rich multifunctional interfaces toward stable Li10GeP2S12-based all-solid-state lithium batteries[J]. Advanced Materials Interfaces, 2022, 9(24): doi: 10.1002/admi.202200822. |
63 | QIAN S S, XING C, ZHENG M T, et al. CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes (adv. energy mater. 15/2022)[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202270062. |
64 | OKUNO R, YAMAMOTO M, KATO A, et al. High cycle stability of nanoporous Si composites in all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(8): doi: 10.1149/1945-7111/ac81f6. |
65 | LEE S, LEE K S, KIM S, et al. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries[J]. Science Advances, 2022, 8(30): doi: 10.1126/sciadv.abq0153. |
66 | SUN X W, WANG L L, MA J, et al. A bifunctional chemomechanics strategy to suppress electrochemo-mechanical failure of Ni-rich cathodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17674-17681. |
67 | NAM J S, TO A RAN W, LEE S H, et al. Densification and charge transport characterization of composite cathodes with single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state batteries[J]. Energy Storage Materials, 2022, 46: 155-164. |
68 | LIU G X, WAN J, SHI Y, et al. Direct tracking of additive-regulated evolution on the lithium anode in quasi-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202201411. |
69 | LIU Q Y, SUN G W, PAN J L, et al. Metal ion cutting-assisted synthesis of defect-rich MoS2 nanosheets for high-rate and ultrastable Li2S catalytic deposition[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 37771-37781. |
70 | CAI D Q, GAO Y T, WANG X Y, et al. Built-in electric field on the Mott-Schottky heterointerface-enabled fast kinetics lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38651-38659. |
71 | LI X T, FU Z H, WANG J, et al. Dilithium phthalocyanine as electrolyte additive for the regulation of ion solvation and transport towards dendrite-free Li metal anodes[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.138112. |
72 | ABRAHAM A M, THIEL K, SHAKOURI M, et al. Ultrahigh sulfur loading tolerant cathode architecture with extended cycle life for high energy density lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(34): doi: 10.1002/aenm.202201494. |
73 | WANG Z H, HU J P, LIU J, et al. Polysulfide regulation by hypervalent iodine compounds for durable and sustainable lithium-sulfur battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, 18(15): doi: 10.1002/smll.202106716. |
74 | WANG Q Y, ZHU M, CHEN G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(16): doi: 10.1002/adma.202109658. |
75 | LI Z H, WU G, YANG Y J, et al. An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(29): doi: 10.1002/aenm.202201197. |
76 | LU L L, ZHU Z X, MA T, et al. Superior fast-charging lithium-ion batteries enabled by the high-speed solid-state lithium transport of an intermetallic Cu6Sn5 network[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(32): doi: 10.1002/adma. 202202688. |
77 | LI R H, O'KANE S, MARINESCU M, et al. Modelling solvent consumption from SEI layer growth in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(6): doi: 10.1149/1945-7111/ac6f84. |
78 | ABE M, KANEKO F, ISHIGURO N, et al. Visualization of sulfur chemical state of cathode active materials for lithium-sulfur batteries by tender X-ray spectroscopic ptychography[J]. The Journal of Physical Chemistry C, 2022, 126(33): 14047-14057. |
79 | CAO D Q, TAN C, CHEN Y H. Oxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries[J]. Nature Communications, 2022, 13: 4908. |
80 | HAN B, LI X Y, WANG Q, et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte[J]. Advanced Materials, 2022, 34(13): doi: 10.1002/adma. 202108252. |
81 | ALBERO BLANQUER L, MARCHINI F, SEITZ J R, et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes[J]. Nature Communications, 2022, 13: 1153. |
82 | RIGAUD S, MARTINEZ A C, LOMBARD T, et al. Mass spectrometry analysis of NMC622/graphite Li-ion cells electrolyte degradation products after storage and cycling[J]. Journal of the Electrochemical Society, 2022, 169(1): doi: 10.1149/1945-7111/ac44bb. |
83 | HUANG L, LU T, XU G J, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries[J]. Joule, 2022, 6(4): 906-922. |
84 | MELIN T, LUNDSTRÖM R, BERG E J. Revisiting the ethylene carbonate-propylene carbonate mystery with operando characterization[J]. Advanced Materials Interfaces, 2022, 9(8): doi: 10.1002/admi.202101258. |
85 | MCSHANE E J, BERGSTROM H K, WEDDLE P J, et al. Quantifying graphite solid-electrolyte interphase chemistry and its impact on fast charging[J]. ACS Energy Letters, 2022, 7(8): 2734-2744. |
86 | FAN X Y, CHEN P, YIN X, et al. One stone for multiple birds: A versatile cross-linked poly(dimethyl siloxane) binder boosts cycling life and rate capability of an NCM 523 cathode at 4.6 V[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16245-16257. |
87 | ZHAO J K, WEI D N, WANG J J, et al. Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 625: 373-382. |
88 | ZHAO X Y, TIAN Y S, LUN Z Y, et al. Design principles for zero-strain Li-ion cathodes[J]. Joule, 2022, 6(7): 1654-1671. |
89 | YU C C, ZHOU H T, WU J C, et al. Ion-permselective polyphenylene sulfide-based solid-state separator for high voltage LiNi0.5Mn1.5O4 battery[J]. Journal of the Electrochemical Society, 2022, 169(7): doi: 10.1149/1945-7111/ac8244. |
90 | REYNOLDS C D, HARE S D, SLATER P R, et al. Rheology and structure of lithium-ion battery electrode slurries[J]. Energy Technology, 2022, 10(10): doi: 10.1002/ente.202200545. |
91 | HAGEMEISTER J, STOCK S, LINKE M, et al. Lean cell finalization in lithium-ion battery production: Determining the required electrolyte wetting degree to begin the formation[J]. Energy Technology, 2022: doi: 10.1002/ente.202200686. |
92 | QIN N, JIN L M, LU Y Y, et al. Over-potential tailored thin and dense lithium carbonate growth in solid electrolyte interphase for advanced lithium ion batteries[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202103402. |
93 | ZHANG Y X, KIM C S, SONG H W, et al. Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition[J]. Energy Storage Materials, 2022, 48: 1-11. |
94 | DONG Q, WANG T, GAN R Y, et al. Separators based on the dynamic tip-occupying electrostatic shield effect for dendrite-free lithium-metal batteries[J]. Advanced Sustainable Systems, 2022, 6(3): doi: 10.1002/adsu.202100386. |
95 | ISAAC J A, DEVAUX D, BOUCHET R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity[J]. Nature Materials, 2022: doi: 10.1038/s41563-022-01343-w. |
96 | CHO S, KIM D Y, LEE J I, et al. Highly reversible lithium host materials for high-energy-density anode-free lithium metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202208629. |
97 | BIELEFELD A, WEBER D A, RUEß R, et al. Influence of lithium ion kinetics, particle morphology and voids on the electrochemical performance of composite cathodes for all-solid-state batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): doi: 10.1149/1945-7111/ac50df. |
98 | CHEN S M, WANG Z J, WANG L, et al. Constructing a robust solid-electrolyte interphase layer via chemical prelithiation for high-performance SiOx anode[J]. Advanced Energy and Sustainability Research, 2022, 3(10): doi: 10.1002/aesr. 202200083. |
99 | LI X H, WANG Q, GUO H Y, et al. Understanding the onset of surface degradation in LiNiO2 cathodes[J]. ACS Applied Energy Materials, 2022, 5(5): 5730-5741. |
100 | SUN S Y, YAO N, JIN C B, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase[J]. Angewandte Chemie International Edition, 2022, 61(42): doi: 10.1002/anie.202208743. |
[1] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[2] | 翟朋博, 常冬梅, 毕志杰, 赵宁, 郭向欣. 锂镧锆氧(LLZO)基固态锂电池界面关键问题研究进展[J]. 储能科学与技术, 2022, 11(9): 2847-2865. |
[3] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[4] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[5] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
[6] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[7] | 吴敬华, 杨菁, 刘高瞻, 王脂胭, 张秩华, 俞海龙, 姚霞银, 黄学杰. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. |
[8] | 陈淼淼, 邵钦君, 陈剑. 锂电池高比能量正极材料Cr8O21 的制备及应用[J]. 储能科学与技术, 2022, 11(9): 3011-3020. |
[9] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[10] | 宋来丰, 梅文昕, 贾壮壮, 王青松. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. |
[11] | 陆剑心, 张英, 马出原, 邓康, 雷春英. 水凝胶对磷酸铁锂电池灭火实验性能[J]. 储能科学与技术, 2022, 11(8): 2637-2644. |
[12] | 钟健平, 费韬. 基于WOA-BPNN的锂电池极片涂布缺陷检测识别[J]. 储能科学与技术, 2022, 11(8): 2537-2545. |
[13] | 蔡兴初, 朱一鸣, 姜可尚, 席旭峰, 张艺超, 林惟实. 全氟己酮气体灭火系统在磷酸铁锂电池储能预制舱的应用[J]. 储能科学与技术, 2022, 11(8): 2497-2504. |
[14] | 石爽, 吕娜伟, 马敬轩, 尹康涌, 孙磊, 张宁, 金阳. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
[15] | 尹涛, 贾隆舟, 常修亮, 戴作强, 郑莉莉. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||