1 |
SKYLLAS-KAZACOS M, RYCHICK M, ROBINS R. All-vanadium redox battery: US4786567[P]. 1988-11-22.
|
2 |
SKYLLAS-KAZACOS M, MENICTAS C. Vanadium redox flow batteries[M]//Encyclopedia of Energy Storage. Amsterdam: Elsevier, 2022: 407-422.
|
3 |
宋子琛, 张宝锋, 童博, 等. 液流电池商业化进展及其在电力系统的应用前景[J]. 热力发电, 2022, 51(3): 9-20.
|
|
SONG Z C, ZHANG B F, TONG B, et al. Commercialization progress of flow battery and its application prospects in electric power system[J]. Thermal Power Generation, 2022, 51(3): 9-20.
|
4 |
贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术, 2015, 4(5): 467-475.
|
|
JIA C K, WANG Q. The development of high energy density redox flow batteries[J]. Energy Storage Science and Technology, 2015, 4(5): 467-475.
|
5 |
高能量密度有机液流电池研究获突破[J]. 机械制造, 2019, 57(3): 78.
|
6 |
彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(Ⅰ)——化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2(1): 55-62.
|
|
PENG J Y, ZU C X, LI H. Fundamental scientific aspects of lithium batteries(Ⅰ)—Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1): 55-62.
|
7 |
刘明义, 韩临武, 郑建涛, 等. 全钒氧化还原液流电池研究进展[J]. 电源技术, 2016, 40(6): 1330-1333.
|
|
LIU M Y, HAN L W, ZHENG J T, et al. Research progress of all-vanadium redox flow battery[J]. Chinese Journal of Power Sources, 2016, 40(6): 1330-1333.
|
8 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
9 |
SKYLLAS-KAZACOS M, CAO L Y, KAZACOS M, et al. Vanadium electrolyte studies for the vanadium redox battery—A review[J]. ChemSusChem, 2016, 9(13): 1521-1543.
|
10 |
CAO L Y, SKYLLAS-KAZACOS M, MENICTAS C, et al. A review of electrolyte additives and impurities in vanadium redox flow batteries[J]. Journal of Energy Chemistry, 2018, 27(5): 1269-1291.
|
11 |
CHOI C, KIM S, KIM R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274.
|
12 |
王刚, 陈金伟, 汪雪芹, 等. 全钒氧化还原液流电池电解液[J]. 化学进展, 2013, 25(7): 1102-1112.
|
|
WANG G, CHEN J W, WANG X Q, et al. Electrolyte for all-vanadium redox flow battery[J]. Progress in Chemistry, 2013, 25(7): 1102-1112.
|
13 |
SKYLLAS-KAZACOS M, GROSSMITH F. Efficient vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1987, 134(12): 2950-2953.
|
14 |
RYCHCIK M, SKYLLAS-KAZACOS M. Characteristics of a new all-vanadium redox flow battery[J]. Journal of Power Sources, 1988, 22(1): 59-67.
|
15 |
SKYLLAS-KAZACOS M, KAZACOS M, MCDERMOTT R. Vanadium Compound Dissolution Processes: AU2814289[P]. 1989-07-05.
|
16 |
CHENG M. Electrolyte optimization and studies for the vanadium redox flow battery[D]. Australia: University of New South Wales, 1991.
|
17 |
CARVALHO W M Jr, CASSAYRE L, QUARANTA D, et al. Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2021, 61: 436-445.
|
18 |
RAHMAN F, SKYLLAS-KAZACOS M. Vanadium redox battery: Positive half-cell electrolyte studies[J]. Journal of Power Sources, 2009, 189(2): 1212-1219.
|
19 |
MURUGESAN V, NIE Z M, ZHANG X, et al. Accelerated design of vanadium redox flow battery electrolytes through tunable solvation chemistry[J]. Cell Reports Physical Science, 2021, 2(2): doi: 10.1016/j.xcrp.2021.100323.
|
20 |
HAGE R E, CHAUVET F, BISCANS B, et al. Kinetic study of the dissolution of vanadyl sulfate and vanadium pentoxide in sulfuric acid aqueous solution[J]. Chemical Engineering Science, 2019, 199: 123-136.
|
21 |
RAHMAN F. Stability and properties of supersaturated vanadium electrolytes, for high energy density vanadium redox battery[D]. Australia: University of New South Wales, 1998.
|
22 |
KAUSAR N, HOWE R, SKYLLAS-KAZACOS M. Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes[J]. Journal of Applied Electrochemistry, 2001, 31: 1327-1332.
|
23 |
RAHMAN F, SKYLLAS-KAZACOS M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions[J]. Journal of Power Sources, 1998, 72(2): 105-110.
|
24 |
NGAMSAI K, ARPORNWICHANOP A. Study on mechanism and kinetic of air oxidation of V(II) in electrolyte reservoir of a vanadium redox flow battery[J]. Energy Procedia, 2014, 61: 1642-1645.
|
25 |
ZHAO Y, LIU L, QIU X P, et al. Revealing sulfuric acid concentration impact on comprehensive performance of vanadium electrolytes and flow batteries[J]. Electrochimica Acta, 2019, 303: 21-31.
|
26 |
赵建新, 武增华, 席靖宇, 等. 钒电池负极电解液V2(SO4)3溶解性规律[J]. 无机材料学报, 2012, 27(5): 469-474.
|
|
ZHAO J X, WU Z H, XI J Y, et al. Solubility rules of negative electrolyte V2(SO4)3 of vanadium redox flow battery[J]. Journal of Inorganic Materials, 2012, 27(5): 469-474.
|
27 |
XIAO S B, YU L H, WU L T, et al. Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research[J]. Electrochimica Acta, 2016, 187: 525-534.
|
28 |
LIU Y B, YU L H, LIU L, et al. Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range[J]. Applied Energy, 2021, 301: doi: 10.1016/j.apenergy.2021.117454.
|
29 |
MOUSA A, SKYLLAS-KAZACOS M. Kinetics of VIII and VII sulfate precipitation processes in negative half-cell electrolyte of the vanadium redox flow battery[J]. ChemElectroChem, 2017, 4(1): 130-142.
|
30 |
ROE S, MENICTAS C, SKYLLAS-KAZACOS M. A high energy density vanadium redox flow battery with 3 M vanadium electrolyte[J]. Journal of the Electrochemical Society, 2015, 163(1): doi: 10.1149/2.0041601jes.
|
31 |
WANG G, ZHANG J C, ZHANG J, et al. Effect of different additives with-NH2 or-NH4 + functional groups on V(V) electrolytes for a vanadium redox flow battery[J]. Journal of Electroanalytical Chemistry, 2016, 768: 62-71.
|
32 |
RAHMAN F, SKYLLAS-KAZACOS M. Evaluation of additive formulations to inhibit precipitation of positive electrolyte in vanadium battery[J]. Journal of Power Sources, 2017, 340: 139-149.
|
33 |
LI L Y, ZHANG J L, MURUGESAN V, et al. Vanadium redox flow battery: Stability of vanadium (V) electrolyte solutions[J]. ECS Meeting Abstracts, 2010, (10): 677.
|
34 |
高波. 全钒液流电池高性能稳定电解液的研究[D]. 兰州: 兰州理工大学, 2013.
|
|
GAO B. The research of high-performance stability electrolyte about VRB[D]. Lanzhou: Lanzhou University of Technology, 2013.
|
35 |
朱朋朋. 杂质离子对全钒液流电池电解液稳定性及电化学性能的影响[D]. 沈阳: 沈阳理工大学, 2014.
|
|
ZHU P P. Influence of impurity ions on the electrolyte stability and electrochemical performance of vanadium redox flow battery[D]. Shenyang: Shenyang Ligong University, 2014.
|
36 |
DING M Q, LIU T, ZHANG Y M. Stability and electrochemical performance analysis of an electrolyte with Na+ impurity for a vanadium redox flow battery in energy storage applications[J]. Energy & Fuels, 2020, 34(5): 6430-6438.
|
37 |
张忠裕, 赵焕, 刘磊, 等. Al元素对钒电池电解液电化学及电池性能影响研究[J]. 钢铁钒钛, 2020, 41(5): 51-57.
|
|
ZHANG Z Y, ZHAO H, LIU L, et al. Influence of Al on electrochemical performances of electrolyte and battery of vanadium redox battery[J]. Iron Steel Vanadium Titanium, 2020, 41(5): 51-57.
|
38 |
LI Z H, LIN Y Q, WAN L, et al. Stable positive electrolyte containing high-concentration Fe2(SO4)3 for vanadium flow battery at 50 ℃[J]. Electrochimica Acta, 2019, 309: 148-156.
|
39 |
KIM S, VIJAYAKUMAR M, WANG W, et al. Chloride supporting electrolytes for all-vanadium redox flow batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(40): 18186-18193.
|
40 |
ZHANG Z H, WEI L, WU M C, et al. Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries[J]. Applied Energy, 2021, 289: doi: 10.1016/j.apenergy.2021.116690.
|
41 |
VIJAYAKUMAR M, LI L Y, NIE Z M, et al. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2012, 14(29): 10233-10242.
|
42 |
KIM S, THOMSEN E, XIA G G, et al. 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes[J]. Journal of Power Sources, 2013, 237: 300-309.
|
43 |
YANG Y D, ZHANG Y M, LIU T, et al. Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte[J]. Journal of Power Sources, 2019, 415: 62-68.
|
44 |
吴波, 周德璧. 应用于氧化还原电池正极的VO(CH3SO3)2电解液[J]. 应用化工, 2015, 44(2): 298-302.
|
|
WU B, ZHOU D B. VO(CH3SO3)2 anolyte used in redox battery[J]. Applied Chemical Industry, 2015, 44(2): 298-302.
|
45 |
KIM G, KIM Y, YIM T, et al. Effects of methanesulfonic acid on electrolyte for vanadium redox flow batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 99: 326-333.
|
46 |
NIKIFORIDIS G, BELHCEN A, ANOUTI M. A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery[J]. Journal of Energy Chemistry, 2021, 57: 238-246.
|
47 |
KIM D, JEON J. A high-temperature tolerance solution for positive electrolyte of vanadium redox flow batteries[J]. Journal of Electroanalytical Chemistry, 2017, 801: 92-97.
|
48 |
LIU Q H, SLEIGHTHOLME A E S, SHINKLE A A, et al. Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2009, 11(12): 2312-2315.
|
49 |
SHINKLE A A, POMAVILLE T J, SLEIGHTHOLME A E S, et al. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries[J]. Journal of Power Sources, 2014, 248: 1299-1305.
|
50 |
ABEROUMAND S, WOODFIELD P, SHABANI B, et al. Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach[J]. Physics Reports, 2020, 881: 1-49.
|
51 |
TAYLOR R, COULOMBE S, OTANICAR T, et al. Small particles, big impacts: A review of the diverse applications of nanofluids[J]. Journal of Applied Physics, 2013, 113(1): doi: 10.1063/1.4754271.
|
52 |
LOBATO J, OVIEDO J, CAÑIZARES P, et al. Impact of carbonaceous particles concentration in a nanofluidic electrolyte for vanadium redox flow batteries[J]. Carbon, 2020, 156: 287-298.
|