储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2746-2771.doi: 10.19799/j.cnki.2095-4239.2021.0538

• 创刊十周年专刊 • 上一篇    下一篇

储热技术研究进展与展望

姜竹1(), 邹博杨1, 丛琳1, 谢春萍2, 李传3, 谯耕4, 赵彦琦5, 聂彬剑1, 张童童1, 葛志伟6, 马鸿坤1, 金翼7, 李永亮1, 丁玉龙1()   

  1. 1.伯明翰大学化工学院储能研究中心,英国 伯明翰 B15 2TT
    2.伦敦政治经济学院格兰瑟姆 气候变化与环境研究所,英国 伦敦 WC2A 2AE
    3.北京工业大学,传热强化与过程节能教育部 重点实验,北京 100124
    4.全球能源互联网欧洲研究院,德国 柏林 10623
    5.江苏大学智能 柔性机械电子研究院,江苏 镇江 212013
    6.中国科学院工程热物理研究所,北京 100190
    7.江苏金合能源科技有限公司,江苏 镇江 212499
  • 收稿日期:2021-11-16 修回日期:2022-05-11 出版日期:2022-09-05 发布日期:2022-08-30
  • 通讯作者: 丁玉龙 E-mail:z.jiang.2@bham.ac.uk;Y.ding@bham.ac.uk
  • 作者简介:姜竹(1990—),女,博士,研究方向为复合相变和热化学储热材料、先进制造和规模化制备、熔融盐的腐蚀,E-mail:z.jiang.2@bham.ac.uk
  • 基金资助:
    英国工程及物理科学研究委员会(EPSRC)资助项目(EP/S016627/1)

Recent progress and outlook of thermal energy storage technologies

Zhu JIANG1(), Boyang ZOU1, Lin CONG1, Chunping XIE2, Chuan LI3, Geng QIAO4, Yanqi ZHAO5, Binjian NIE1, Tongtong ZHANG1, Zhiwei GE6, Hongkun MA1, Yi JIN7, Yongliang LI1, Yulong DING1()   

  1. 1.Birmingham Centre for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK
    2.Grantham Research Institute on Climate Change and the Environment (GRI), London School of Economics and Political Science (LSE ), London WC2A 2AE, UK
    3.MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing University of Technology, Beijing 100124, China
    4.Global Energy Interconnection Research Institute Europe GmbH, Berlin 10623, Germany
    5.Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    6.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    7.Jiangsu Jinhe Energy Technology Co. , Ltd. , Zhenjiang 212499, Jiangsu, China
  • Received:2021-11-16 Revised:2022-05-11 Online:2022-09-05 Published:2022-08-30
  • Contact: Yulong DING E-mail:z.jiang.2@bham.ac.uk;Y.ding@bham.ac.uk

摘要:

储热技术在解决可再生能源间歇性问题和提高能源利用效率等方面发挥着重要作用。本文针对储热技术的研究进展,分别从材料、装置、系统、政策干预等方面进行了综述。针对储热材料的性能提升,本文对构建复合型储热材料的配方研究、材料特性的微观模拟研究,及其相关的制备技术进行了总结。此外,随着高温熔融盐储热材料在光热发电系统中的广泛应用,本文对其产生的高温腐蚀行为与腐蚀防护技术进行了概述。储热装置方面,本文重点介绍了板式、填充床式和管壳式储热单元的强化传热方法。储热系统与应用方面,本文对基于相变储热和热管理、热化学储热、液态空气储能的应用研究进行了概述。最后,储热技术的发展离不开适当的政策干预,因此本文对不同国家针对储热技术制定的相关政策进行了报道。

关键词: 显热储热, 相变储热, 热化学储热, 液态空气储能, 政策与经济

Abstract:

Thermal energy storage (TES) plays an important role in addressing the intermittency issue of renewable energy and enhancing energy utilization efficiency. This study focuses on recent progress in TES materials, devices, systems, and government policies. In terms of the TES materials, the formulation of composite TES materials (e.g., phase change and thermochemical materials) to improve material performance, molecular-scale simulation of the material properties, and the associated fabrication technologies have been summarized. Corrosion challenges of TES materials in practical applications were reviewed, especially high-temperature molten salt corrosion. Heat transfer enhancement measures of the slab type, packed bed, and tube-and-shell TES heat exchangers were discussed for TES devices. Besides, TES systems based on latent heat storage and thermal management, thermochemical heat storage, and liquid air energy storage, have been introduced. Finally, government policies of different countries to facilitate TES technology deployment were reported.

Key words: sensible heat storage, latent heat storage, thermochemical heat storage, liquid air energy storage, policies and economics

中图分类号: