1 |
THALLER L H. Electrically rechargeable redox flow cells: US, 3996064[P]. 1974.
|
2 |
CHIENG S C, KAZACOS M, SKYLLAS-KAZACOS M. Preparation and evaluation of composite membrane for vanadium redox battery applications[J]. Journal of Power Sources, 1992, 39(1): 11-19.
|
3 |
SUKKAR T, SKYLLAS-KAZACOS M. Membrane stability studies for vanadium redox cell applications[J]. Journal of Applied Electrochemistry, 2004, 34(2): 137-145.
|
4 |
SUKKAR T, SKYLLAS-KAZACOS M. Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery[J]. Journal of Membrane Science, 2003, 222(1/2): 249-264.
|
5 |
MENICTAS C, CHENG M, SKYLLAS-KAZACOS M. Evaluation of an NH4VO3 -derived electrolyte for the vanadium-redox flow battery[J]. Journal of Power Sources, 1993, 45(1): 43-54.
|
6 |
SKYLLAS-KAZACOS M. Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery[J]. Electrochemical and Solid-State Letters, 1999, 2(3): 121-122.
|
7 |
KAZACOS M, CHENG M, SKYLLAS-KAZACOS M. Vanadium redox cell electrolyte optimization studies[J]. Journal of Applied Electrochemistry, 1990, 20(3): 463-467.
|
8 |
HADDADI-ASL V, KAZACOS M, SKYLLAS-KAZACOS M. Conductive carbon-polypropylene composite electrodes for vanadium redox battery[J]. Journal of Applied Electrochemistry, 1995, 25(1): 29-33.
|
9 |
ZHONG S, KAZACOS M, BURFORD R P, et al. Fabrication and activation studies of conducting plastic composite electrodes for redox cells[J]. Journal of Power Sources, 1991, 36(1): 29-43.
|
10 |
SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058.
|
11 |
SKYLLAS-KAZACOS M. An historical overview of the vanadium redox flow battery development at the University of New South Wales[R]. Australia: 2005.
|
12 |
SUM E, RYCHCIK M, SKYLLAS-KAZACOS M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery[J]. Journal of Power Sources, 1985, 16(2): 85-95.
|
13 |
SUM E, SKYLLAS-KAZACOS M. A study of the V(II)/V(III) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2/3): 179-190.
|
14 |
GINER J, CAHILL K. Advanced screening of electrode couples[R]. United States Government, United States Department of Energy, 1980.
|
15 |
HAGEDORN N, HOBERECHT M, THALLER L. NASA-Redox cell-stack shunt current, pumping power, and cell-performance tradeoffs[R]. Office of Scientific and Technical Information (OSTI), 1982.
|
16 |
HAGEDORN N. NASA redox storage system sevelopment project. Final report[R]. Office of Scientific and Technical Information (OSTI), 1984.
|
17 |
NAKAYAMA T, SERA Y, MITSUDA A. The Current status of development of advanced battery electric energy storage systems in Japan[C]//Energy Conversion Engineering Conference, 1989. IECEC-89. Proceedings of the 24th Intersociety. IEEE, 1989.
|
18 |
LOPEZ-ATALAYA M, CODINA G, PEREZ J R, et al. Optimization studies on a Fe/Cr redox flow battery[J]. Journal of Power Sources, 1992, 39(2): 147-154.
|
19 |
JOHNSON D A, REID M A. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron-chromium redox energy storage system[J]. Journal of the Electrochemical Society, 1985, 132(5): 1058-1062.
|
20 |
BARTOLOZZI M. Development of redox flow batteries. A historical bibliography[J]. Journal of Power Sources, 1989, 27(3): 219-234.
|
21 |
林兆勤, 江志韫. 日本铁铬氧化还原液流电池的研究进展: Ⅰ.电池研制进展[J]. 电源技术, 1991(2): 32-39, 47.
|
22 |
FUTAMATA M, HIGUCHI S, NAKAMURA O, et al. Transient response of 10 kW class advanced batteries to abrupt load changes[J]. Journal of Power Sources, 1988, 24(1): 31-39.
|
23 |
FUTAMATA M, HIGUCHI S, NAKAMURA O, et al. Performance testing of 10 kW-class advanced batteries for electric energy storage systems in Japan[J]. Journal of Power Sources, 1988, 24(2): 137-155.
|
24 |
ZHAO P, ZHANG H M, ZHOU H T, et al. Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes[J]. Electrochimica Acta, 2005, 51(6): 1091-1098.
|
25 |
ZHAO P, ZHANG H M, ZHOU H T, et al. Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack[J]. Journal of Power Sources, 2006, 162(2): 1416-1420.
|
26 |
MA X K, ZHANG H M, SUN C X, et al. An optimal strategy of electrolyte flow rate for vanadium redox flow battery[J]. Journal of Power Sources, 2012, 203: 153-158.
|
27 |
YAO C, ZHANG H M, LIU T, et al. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery[J]. Journal of Power Sources, 2012, 218: 455-461.
|
28 |
YUAN Z Z, ZHU X X, LI M R, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angewandte Chemie, 2016, 128(9): 3110-3114.
|
29 |
ZHAO Y Y, LI M R, YUAN Z Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials, 2016, 26(2): 210-218.
|
30 |
XU W X, ZHAO Y Y, YUAN Z Z, et al. Highly stable anion exchange membranes with internal cross-linking networks[J]. Advanced Functional Materials, 2015, 25(17): 2583-2589.
|
31 |
ZHANG H Z, ZHANG H M, ZHANG F X, et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application[J]. Energy & Environmental Science, 2013, 6(3): 776-781.
|
32 |
ZHANG H Z, ZHANG H M, LI X F, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy Environ Sci, 2012, 5(4): 6299-6303.
|
33 |
ZHANG H Z, ZHANG H M, LI X F, et al. Nanofiltration (NF) membranes: The next generation separators for all vanadium redox flow batteries (VRBs)? [J]. Energy & Environmental Science, 2011, 4(5): 1676-1679.
|
34 |
LI X F, ZHANG H M, MAI Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4): 1147-1160
|
35 |
MA X K, ZHANG H M, XING F. A three-dimensional model for negative half cell of the vanadium redox flow battery[J]. Electrochimica Acta, 2011, 58: 238-246.
|
36 |
ZHENG Q, ZHANG H M, XING F, et al. A three-dimensional model for thermal analysis in a vanadium flow battery[J]. Applied Energy, 2014, 113: 1675-1685.
|
37 |
ZHENG Q, XING F, LI X F, et al. Dramatic performance gains of a novel circular vanadium flow battery[J]. Journal of Power Sources, 2015, 277: 104-109.
|
38 |
YUE M, ZHENG Q, XING F, et al. Flow field design and optimization of high power density vanadium flow batteries: A novel trapezoid flow battery[J]. AIChE Journal, 2018, 64(2): 782-795.
|