储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2713-2745.doi: 10.19799/j.cnki.2095-4239.2022.0309
吴敬华1,2(), 杨菁1, 刘高瞻1, 王脂胭1,2, 张秩华1, 俞海龙2,3, 姚霞银1,2(), 黄学杰2,3()
收稿日期:
2022-06-10
修回日期:
2022-07-29
出版日期:
2022-09-05
发布日期:
2022-08-30
通讯作者:
姚霞银,黄学杰
E-mail:wujh@nimte.ac.cn;yaoxy@nimte.ac.cn;xjhuang@iphy.ac.cn
作者简介:
吴敬华(1982—),男,博士,副研究员,研究方向为正极材料与电池界面,E-mail:wujh@nimte.ac.cn;
基金资助:
Jinghua WU1,2(), Jing YANG1, Gaozhan LIU1, Zhiyan WANG1,2, Zhihua ZHANG1, Hailong YU2,3, Xiayin YAO1,2(), Xuejie HUANG2,3()
Received:
2022-06-10
Revised:
2022-07-29
Online:
2022-09-05
Published:
2022-08-30
Contact:
Xiayin YAO, Xuejie HUANG
E-mail:wujh@nimte.ac.cn;yaoxy@nimte.ac.cn;xjhuang@iphy.ac.cn
摘要:
采用固体电解质取代液态有机电解液的固态锂电池,有望使用更高比容量的正、负极材料,从而实现更高比能量的电池体系,同时可彻底解决电池的安全性问题,符合未来二次电池发展的方向,是电动汽车和规模化储能的理想电源。为了实现兼具高比能量、高安全性、长寿命等特性的固态电池,进而推进全固态锂电池的实用化,2011—2021年间各国的科学家做了大量工作,并取得了许多突破性进展。本文以固态锂电池关键材料为出发点,回顾了2011—2021年以来固态电池的研究进展,包括锂离子固体电解质材料,电极/电解质界面调控,固态电池技术等方面,总结了现在存在的挑战及解决方案,并对该领域未来可能的发展提出了展望。
中图分类号:
吴敬华, 杨菁, 刘高瞻, 王脂胭, 张秩华, 俞海龙, 姚霞银, 黄学杰. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745.
Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021)[J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745.
表1
NASICON/Li界面不同的界面修饰层材料对比"
电解质材料 | 界面层 材料 | 界面层种类 | 界面层 制备方法 |
---|---|---|---|
Li1.5Al0.5Ge1.5(PO4)3[ | Ge | 非晶 | 溅射 |
Li1.5Al0.5Ge1.5(PO4)3[ | LiF/Li3N | 氟化物/氮化物 | 电化学预循环 |
Li1.3Al0.3Ti1.7(PO4)3[ | BN | 氮化物 | CVD |
Li1.4Al0.4Ti1.6(PO4)3[ | ZnO | 氧化物 | 溅射 |
Li1.5Al0.5Ti1.5(PO4)3[ | Al2O3 | 氧化物 | ALD |
Li1.5Al0.5Ti1.5(PO4)3[ | Li3PO4 | 氧化物 | 电解液浸泡 |
Li1.4Ti2Si0.4P2.6O12-AlPO4[ | LiPON | 电解质 | 溅射 |
Li1.5Al0.5Ti1.5(PO4)3[ | PEO | 电解质 | 涂覆 |
表2
LLZO/Li界面不同的润湿层材料对比"
电解质材料 | 润湿层材料 | 界面层 种类 | 界面层制备方法 |
---|---|---|---|
Li6.375La3Zr1.375Nb0.625O12[ | Sn | 金属 | 溅射 |
Li6.85La2.9Ca0.1Zr1.75Nb0.25O12[ | Si | 非金属 | CVD |
Li5.9Al0.2La3Zr1.75W0.25O12[ | C | 非金属 | 涂覆 |
Li7La3Zr2O12[ | Au | 金属 | 溅射 |
Li6.85La2.9Ca0.1Zr1.75Nb0.25O12[ | Ge | 金属 | 热蒸镀 |
Li7La2.75Ca0.25Zr1.75Nb0.25O12[ | Al2O3 | 氧化物 | ALD |
Li6.5La3Zr1.5Ta0.5O12[ | MoS2 | 硫化物 | 涂覆 |
Li6.5La3Zr1.5Ta0.5O12[ | Li3N | 氮化物 | 原位反应 |
Li6.4La3Zr1.4Ta0.6O12[ | LiF | 氟化物 | 热蒸镀 |
表3
不同类固体电解质的离子电导率以及制备方法"
电解质种类 | 电解质分子式 | 离子电导率/(S/cm) | 制备方法 | 文献 |
---|---|---|---|---|
NASICON结构 | Li1.3Al0.3Ti1.7(PO4)3 | 1.0×10-3 | 溶胶-凝胶法 | [ |
Li1.3Al0.3Ti1.7(PO4)3 | 6.22×10-4 | 喷雾干燥法 | [ | |
Li1.3Al0.3Ti1.7(PO4)3 | 1.21×10-3 | 液相法 | [ | |
Li1.35Al0.35Ge0.2Ti1.45(PO4)3 | 1.58×10-3 | 固相法 | [ | |
Li1.5Al0.5Ge1.5(PO4)3-7.5 wt% TiO2 | 1.07×10-3 | 固相法 | [ | |
石榴石结构 | Li6.55La3Zr2Ga0.15□0.30O12 | 1.3×10-3 | 溶胶-凝胶法/氧气烧结 | [ |
Li6.20Ga0.30La2.95Rb0.05Zr2O12 | 1.62×10-3 | 固相法 | [ | |
Li6.25Ga0.25La3Zr2O12 | 1.46×10-3 | 固相法 | [ | |
Li6.25Fe0.25La3Zr2O12 | 1.38×10-3 | 固相法 | [ | |
Li6.5La3Zr1.5Ta0.5O12 | 8.4×10-4 | 固相法 | [ | |
Li6.5La3Zr1.75Te0.25O12 | 1.02×10-3 | 固相法 | [ | |
Li6.65Ga0.15La3Zr1.90Sc0.10O12 | 1.8×10-3 | 溶胶-凝胶法 | [ | |
Li6.5La3Zr1.5Ta0.5O12 | 1.0×10-3 | 快速高温烧结法 | [ | |
钙钛矿结构 | Li0.375Sr0.4375Hf0.25Ta0.75O3 | 3.8×10-4 | 固相法 | [ |
Li0.38Sr0.44Hf0.3Ta0.7O2.95F0.05 | 4.8×10-4 | 固相法 | [ | |
Li-P-S体系 | Li3PS4 | 1.6×10-4 | 液相法 | [ |
Li7P2S8I | 6.3×10-4 | 固相法 | [ | |
Li7P3S11 | 1.7×10-2 | 热压法 | [ | |
Li7P3S11 | 1.5×10-3 | 液相法 | [ | |
Li11-x M2-x P1+x S12体系 | Li10GeP2S12 | 1.2×10-2 | 固相法 | [ |
Li9.54Si1.74P1.44S11.7Cl0.3 | 2.5×10-2 | 固相法 | [ | |
Li9.54Si1.74P1.44S11.4Cl0.3O0.3 | (28±3)×10-3 | 固相法 | [ | |
Li10SnP2S12 | 7×10-3 | 固相法 | [ | |
Li6PS5X体系 | Li5.5PS4.5Cl1.5 | (12.0±0.2)×10-3 | 固相法(真空) | [ |
Li5.3PS4.3ClBr0.7 | 24×10-3 | 固相法(真空) | [ | |
Li6.6P0.4Ge0.6S5I | (18.4±2.7)×10-3 | 固相法(真空) | [ | |
Li6.6Si0.6Sb0.4S5I | 24×10-3 | 固相法(真空) | [ | |
聚合物 | PVDF-LiClO4 | 2.03×10-4 | 涂布 | [ |
PVDF-HFP-[Li(DMF)3][TFSI] | 1.55×10-3 | 浇铸 | [ | |
PEGDMA-LiTFSI | 2.85×10-4 (60 ℃) | 紫外光辐照 | [ | |
PVCA-LiDFOB | 9.82×10-5 (50 ℃) | 原位聚合 | [ | |
PPC-LiTFSI | 3×10-4 | 涂布 | [ | |
TEGDME-PEO-NC-LiClO4 | 10-4 | 涂布 | [ | |
PE-PEO cross-linked | >1.0×10-4 | 浇铸 | [ | |
PEO-LiTFSI-PI | 2.3×10-4 | 模板浇铸 | [ | |
PEO-LiTFSI-PE | 1.54×10-4 (60 ℃) | 浇铸 | [ | |
PEGMEA-LiTFSI-(PE-PMMA-PS) | 4.53×10-5 ( 60 ℃) | 隔膜原位热固化 | [ | |
PEO-LiTFSI-LLTO | 2.04×10-4 | 浇铸 | [ | |
PAN/LiClO4∶LLZTO | 1.18×10-3 | 静电纺丝 | [ | |
卤化物 | Li3InCl6 | 1.49×10-3 | 固相法(真空) | [ |
2.04×10-3 | 液相法 | [ | ||
Li3YCl6 | 0.51×10-3 | 固相法(真空) | [ | |
1.25×10-3 | 铵辅助合成法 | [ | ||
Li3YBr6 | 3.3×10-3 | 固相法 | [ | |
Li3ScCl6 | 3×10-3 | 固相法(真空) | [ | |
Li2Sc2/3Cl4 | 1.5×10-3 | 固相法 | [ | |
Li3Y0.1In0.9Cl6 | 1.26×10-3 | 固相法(真空) | [ | |
Li3YBr3Cl3 | 7.2×10-3 | 热压法 | [ | |
Li2.5Y0.5Zr0.5Cl6 | 1.4×10-3 | 固相法(真空) | [ | |
Li3YBr5.7F0.3 | 1.8×10-3 | 固相法(真空) | [ |
表4
国内外企业固态电池产业化进展"
公司名称 | 可能的技术路线 | 开展时间 | 业务情况 | 链接地址 | |
---|---|---|---|---|---|
国外车企 | 丰田 | 硫化物 | 2008 | 2020年6月开始为概念车LQ配备全固态电池 | https://www.toyota.ie/world-of-toyota/articles-news-events/2021/solid-state-batteries.json |
计划在2025年,实现全固态电池的小规模量产;到2030年,实现全固态电池持续的、稳定的量产 | |||||
本田 | 硫化物 | 2017 | 2017年自研固态电池 | https://asia.nikkei.com/Business/Business-Spotlight/Can-Japan-and-Toyota-win-the-solid-state-battery-race | |
计划在 2022年3月底之前通过试生产线验证其全固态产品。目标在2030年将该产品商业化 | https://www.protocol.com/bulletins/honda-ev-plan | ||||
雷诺-三菱-日产联盟 | 硫化物 | 2017 | 2018年与丰田日产松下合作研发固态电池,从日本经济产业省获得了1400万美元的资金支持 | https://asia.nikkei.com/Spotlight/Most-read-in-2020/Toyota-s-game-changing-solid-state-battery-en-route-for-2021-debut | |
2022年1月宣布在未来五年内向电动汽车投资230亿欧元(合259亿美元),作为已有联盟的一部分。除了投资现有技术,该联盟的目标是在2028年年中实现全固态电池的大规模商业生产 | https://www.motorauthority.com/news/1134880_renault-nissan-mitsubishi-alliance-plans-35-evs-solid-state-batteries-by-2030 | ||||
现代 | 硫化物、聚合物 | 2017 | 投资固态电池初创企业Ionic Materials | https://news.hyundaimotorgroup.com/MediaCenter/News/Press-Releases/hmc-CRADLE-180710 | |
2018 | 与三星SDI联合投资了Solid Power | https://www.hyundaimotorgroup.com/news/newsMain | |||
2021 | 2021年投资solid energy systems | ||||
宝马 | 硫化物 | 2018 | 投资固态电池初创企业Solid Power | https://www.press.bmwgroup.com/global/article/detail/T0331495EN/bmw-group-strengthens-leadership-position-in-battery-technology-with-investment-in-solid-state-innovator-solid-power?language=en | |
福特 | 硫化物 | 2019 | 投资固态电池初创企业Solid Power | https://media.ford.com/content/fordmedia/fna/us/en/news/2021/05/03/ford-boosts-investment-in-solid-power.html | |
大众 | 氧化物 | 2018 | 投资固态电池初创企业QuantumScape 1亿美元,2020年追加2亿美元投资 | https://fortune.com/2021/07/13/volkswagen-us-market-share-evs-autonomous-vehicles-tesla/ | |
博洛雷 | 聚合物 | 2008 | 2020年已获得欧洲109辆全固态电池大巴Bluebus订单 | https://www.blue-solutions.com/en/media/ | |
国外 供应商 | Quantum Scape | 氧化物 | 2018 | 获大众集团(2018年向该公司投资1亿美元)、上汽集团、比尔·盖茨等的投资,2020年11月通过SPAC方式上市,计划2024年建立1 GWh试生产线。 | https://www.autoevolution.com/news/quantumscape-will-now-sell-its-solid-state-batteries-to-a-fourth-carmaker-182980.html |
松下 | 卤化物 | — | 与丰田合作研究生产全固态电池,在中国投资9.1亿美元创办Prime Planet Energy & Solutions合资公司,业务包含全固态电池 | https://asia.nikkei.com/Spotlight/Most-read-in-2020/Toyota-s-game-changing-solid-state-battery-en-route-for-2021-debut | |
LG | — | — | 计划2025年年底实现锂硫电池商业化,并在2025—2027年间实现全固态电池商业化 | https://equalocean.com/briefing/20210429230043768 | |
富士通FDK | 氧化物 | — | 2920万美元投资FDK开发固态电池,已启动超小型全固态电池的样品供货 | https://www.fdk.com/whatsnew-e/release20190509-e.html | |
OHARA | 氧化物 | — | 开发基于玻璃陶瓷LICGC的全固态电池 | https://www.oharacorp.com/lic-gc.html | |
日立造船 | 硫化物 | — | 2018财年在太空领域投入使用,2020年后期量产电动汽车 | https://asia.nikkei.com/Business/Energy/World-s-highest-capacity-solid-state-battery-developed-in-Japan | |
三洋化成工业 | 聚合物 | — | 已布局全树脂固态电池,福井县越前市,将于2021年投产,总建筑面积约为8600平方米 | https://www.sanyo-chemical.co.jp/eng/products_info/development/battery | |
出光兴产 | 硫化物 | — | 2021年量产固态电池电解质,2023年EV固态电池实用,硫化物电解质专利全球第二 | https://www.greencarcongress.com/2010/03/idemitsu-sulfide-20100307.html | |
村田制作所 | 氧化物 | — | 滋贺县的工厂投入数亿日元制造全固体电池 | https://www.murata.com/en-us/news/batteries/solid_state/2019/0626 | |
Ionic Materials | 聚合物 | 1982 | 雷诺三菱日产联盟、韩国三星、英国戴森等科技业巨头已集体向Ionic Materials投资超过6500 万美元 | https://www.idtechex.com/en/research-article/solid-state-battery-market-will-grow-to-8-billion-by-2031/24051 | |
Solid Energy Systems | — | 2012 | 电池制造商SES Holdings Pte.已同意与艾芬豪资本收购公司(Ivanhoe Capital Acquisition Corp.)合并上市,合并后的公司估值约为36亿美元 | https://www.bloomberg.com/news/articles/2021-07-13/ev-battery-maker-ses-said-to-agree-to-go-public-via-ivanhoe-spac | |
Solid Power Battery | 硫化物 | 2012 | 获得福特,A123,宝马等投资1.3亿美元 | https://www.greencarcongress.com/2021/05/20210504-solidpower.html | |
2021年在纳斯达克上市 | https://www.globenewswire.com/news-release/2021/12/08/2348686/0/en/Solid-Power-to-Trade-on-Nasdaq-as-SLDP-After-Completing-Business-Combination-with-Decarbonization-Plus-Acquisition-Corporation-III.html | ||||
BlueSolutions (Bollore) | 聚合物 | 2012 | Bollore集团持续投资 | https://www.electrive.com/2021/03/03/actually-we-are-the-pioneer-of-solid-state-battery/ | |
三星SDI | 硫化物、 聚合物 | — | 投资Solid Power,Ionic Materials,与LG,SK合作投入9000万美元研发电池技术 | https://www.greentechmedia.com/articles/read/industry-giants-samsung-and-hyundai-invest-in-solid-state-batteries | |
2022年3月14日分别宣布在其位于京畿道水原市Yeongtong-gu的一条占地6500平方米的全固态电池试验线“S-Line”动工 | https://www.samsungsdi.com/sdi-news/2602.html?idx=2602 | ||||
国内企业 | 清陶能源 | — | 2002 | 2002年创始人团队开始研发固态电池 | http://www.jsqingtao.com/company.asp?ID=1 |
2018 | 2018年建成国内第一条固态电池生产线,推出的高安全性、高能量密度、柔性化等固态电池产品,已在特种电源、高端数码等领域成功应用,在新能源汽车领域先行先试。 | http://www.jsqingtao.com/chanye.asp?ID=48 | |||
2022 | 2022年2月26日上午,总投资50亿元的清陶新能源固态锂电池产业化项目在昆山开发区破土动工,预计此次开工的固态锂电池产业化项目建成投产之后,将达到100亿瓦时年装机量 | http://www.ks.gov.cn/kss/qzkx/202202/64d6a63da4424efd8255e390e175fdc0.shtml | |||
赣锋锂业 | — | 2017 | 56 Ah固态锂离子电池,能量密度240±5 Wh/kg,循环寿命≥1500次 10 Ah固态锂金属电池,能量密度350±5 Wh/kg,循环寿命≥300次 固态锂电池模组,能量密度 ≥210 Wh/kg | http://www.ganfenglithium.com/product11/typeid/26.html | |
2022 | 赣锋锂电已交付东风汽车50辆固态电池电动汽车 | https://finance.eastmoney.com/a/202201232257768534.html | |||
辉能科技 | — | 2013 | 2013年实现固态电池量产在台湾建成1 GWh工厂 | https://prologium.com/the-landing-of-solidstate-battery-car-is-on-the-clock-with-a-strong-entry-of-nio-together-with-prologium/ | |
2019年与蔚来汽车达成合作意向 | |||||
2022年获得梅赛德斯-奔驰数百万欧元投资,双方将共同开发下一代电动汽车固态电池电芯 | |||||
蜂巢能源 | — | 2018 | 蜂巢能源的原型样件能量密度达到350 Wh/kg,通过针刺和200 ℃热箱实验,预测循环寿命超过1000次;基于果冻电池技术的NCM短刀L600电池已经成功通过针刺试验,不起火,不冒烟,能量密度达到230 Wh/kg | https://www.thepaper.cn/newsDetail_forward_15972955 | |
卫蓝新能源 | — | 2016 | 2016年创办 | http://www.solidstatelion.com/history/ | |
2019年溧阳产线开工,已于2020年7月投产 | |||||
2021年5月公司发明专利突破200件 | |||||
2022年2月25日下午,在山东淄博市齐鲁储能谷开工建设100 GWh固态锂电池项目,总投资400亿元 |
1 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013. |
2 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
3 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. |
4 | DOUGHTY Daniel, ROTH E Peter. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012: 21(2): 37-44. |
5 | 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
LI Hong, XU Xiaoxiong. R&D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
6 | FAN L, WEI S, LI S, et al. Recent progress of the solid‐state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702657. |
7 | MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Review Materials, 2017, 2(4): 16103. |
8 | GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): 1705702. |
9 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1(4): 16042. |
10 | 郭玉国. "高能量密度纳米固态金属锂电池研究" 项目介绍[J]. 储能科学与技术, 2016, 5(6): 919-921. |
GUO Yuguo. Project "High-energy solid-state lithium metal batteries based on nanostructured materials"[J]. Energy Storage Science and Technology, 2016, 5(6): 919-921. | |
11 | BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chemical reviews, 2015, 116(1): 140-162. |
12 | 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. |
LI Yang, DING Fei, SANG Lin, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. | |
13 | HOU M, FENG L, CHEN K, et al. Challenges and perspectives of NASICON-type solid electrolytes for all solid-state lithium batteries[J]. Nanotechnology, 2019, 31: 132003-132018. |
14 | ZHU L, WANG Y, CHEN J, et al. Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites[J]. Science advances, 2022, 8(11): eabj7698. |
15 | HARTMANN P, LEICHTWEISS T, BUSCHE M R, et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21064-21074. |
16 | HAO X, ZHAO Q, SU S, et al. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901604. |
17 | LIU Y, SUN Q, ZHAO Y, et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31240-31248. |
18 | SAGANE F, SHIMOKAWA R, SANO H, et al. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface[J]. Journal of Power Sources, 2013, 225: 245-250. |
19 | HE M, CUI Z, CHEN C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24): 11463-11470. |
20 | ZHANG Z, CHEN S, YANG J, et al. Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode[J]. Electrochimica Acta, 2019, 297: 281-287. |
21 | LIU Y, LI C, LI B, et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries[J]. Advanced Energy Materials, 2018, 8(16): 1702374. |
22 | HOU G, MA X, SUN Q, et al. Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18610-18618. |
23 | CHENG Q, LI A, LI N, et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule, 2019, 3(6): 1510-1522. |
24 | LIU J, LIU T, PU Y, et al. Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer[J]. RSC Advances, 2017, 7(74): 46545-46552. |
25 | BUSCHMANN H, DöLLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12"[J]. Physical Chemistry Chemical Physics, 2011, 13(43): 19378-19392. |
26 | HUBAUD A A, SCHROEDER D J, KEY B, et al. Low temperature stabilization of cubic (Li7- xAlx/3)La3Zr2O12: role of aluminum during formation[J]. Journal of Materials Chemistry A, 2013, 1(31): 8813-8818. |
27 | AHN J H, PARK S-Y, LEE J-M, et al. Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12[J]. Journal of Power Sources, 2014, 254: 287-292. |
28 | 姜鹏峰, 石元盛, 李康万, 等. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537. |
JIANG Pengfeng, SHI Yuansheng, LI Kangwan, et al. Recent progress on the Li7La3Zr2O12(LLZO)solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. | |
29 | AGUESSE F, MANALASTAS W, BUANNIC L, et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3808-3816. |
30 | DIXIT M B, REGALA M, SHEN F, et al. Tortuosity effects in garnet-type Li7La3Zr2O12 solid electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2022-2030. |
31 | SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139. |
32 | HUANG X, LIU C, LU Y, et al. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery[J]. Journal of Power Sources, 2018, 382: 190-197. |
33 | HAO S, ZHANG H, YAO W, et al. Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte[J]. Journal of Power Sources, 2018, 393: 128-134. |
34 | GAO Y, SUN S, ZHANG X, et al. Amorphous dual-layer coating: Enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte[J]. Advanced Functional Materials, 2021, 31(15): 2009692. |
35 | KATAOKA K, NAGATA H, AKIMOTO J. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application[J]. Scientific Reports, 2018, 8(1): 9965. |
36 | KATAOKA K. Oxide single crystals with high lithium-ion conductivity as solid electrolytes for all-solid-state lithium secondary battery applications[J]. Journal of the Ceramic Society of Japan, 2020, 128(1): 7-18. |
37 | HAN X, GONG Y, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
38 | LUO W, GONG Y, ZHU Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. |
39 | SHAO Y, WANG H, GONG Z, et al. Drawing a soft interface: An effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Letters, 2018, 3(6): 1212-1218. |
40 | TSAI C L, RODDATIS V, CHANDRAN C V, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10617-10626. |
41 | LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): 1606042. |
42 | FU J, YU P, ZHANG N, et al. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte[J]. Energy & Environmental Science, 2019, 12(4): 1404-1412. |
43 | XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 ℃[J]. Nano Letters, 2018, 18(11): 7414-7418. |
44 | TANG S, CHEN G, REN F, et al. Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes[J]. Journal of Materials Chemistry A, 2021, 9(6): 3576-3583. |
45 | YAN J, YU J, DING B. Mixed ionic and electronic conductor for Li-metal anode protection[J]. Advanced Materials, 2018, 30(7): 1705105. |
46 | SEINO Y, NAKAGAWA M, SENGA M, et al. Analysis of the structure and degree of crystallisation of 70Li2S-30P2S5 glass ceramic[J]. Journal of Materials Chemistry A, 2015, 3(6): 2756-2761. |
47 | HAYASHI A, TATSUMISAGO M. Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes[J]. Electronic Materials Letters, 2012, 8(2): 199-207. |
48 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of The Electrochemical Society, 2001, 148(7): A742-A746. |
49 | WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 2000751. |
50 | HAYASHI A, MURAMATSU H, OHTOMO T, et al. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M=Fe, Zn, and Bi) nanoparticles[J]. Journal of Materials Chemistry A, 2013, 1(21): 6320. |
51 | HARUYAMA J, SODEYAMA K, TATEYAMA Y. Cation mixing properties toward co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 286-292. |
52 | MERCIER R, MALUGANI J-P, FAHYS B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics, 1981, 5: 663-666. |
53 | LIU Z, FU W, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous beta-Li3PS4[J]. Journal of the American Chemical Society, 2013, 135(3): 975-978. |
54 | RANGASAMY E, LIU Z, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the American Chemical Society, 2015, 137(4): 1384-1387. |
55 | SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631. |
56 | YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. |
57 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
58 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4). |
59 | LI Y, DAIKUHARA S, HORI S, et al. Oxygen substitution for Li-Si-P-S-Cl solid electrolytes toward purified Li10GeP2S12-type phase with enhanced electrochemical stabilities for all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(20): 8860-8867. |
60 | BRON P, JOHANSSON S, ZICK K, et al. Li10SnP2S12: An affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697. |
61 | HAYASHI A, NISHIO Y, KITAURA H, et al. Novel technique to form electrode-electrolyte nanointerface in all-solid-state rechargeable lithium batteries[J]. Electrochemistry Communications, 2008, 10(12): 1860-1863. |
62 | ZIOLKOWSKA D A, ARNOLD W, DRUFFEL T, et al. Rapid and economic synthesis of a Li7PS6 solid electrolyte from a liquid approach[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6015-6021. |
63 | DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie International Edition, 2008, 47(4): 755-758. |
64 | ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie International Edition, 2019, 58(26): 8681-8686. |
65 | PATEL S V, BANERJEE S, LIU H, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6- xPS5- xClBrx: An unusual compositional space[J]. Chemistry of Materials, 2021, 33(4): 1435-1443. |
66 | KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+ xP1- xGexS5I for all-solid-state batteries[J]. Journal of the American Chemical Society, 2018, 140(47): 16330-16339. |
67 | ZHOU L, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. Journal of the American Chemical Society, 2019, 141(48): 19002-19013. |
68 | KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat. Mater., 2019, 18(10): 1105-1111. |
69 | FUCHS T, CULVER S P, TILL P, et al. Defect-mediated conductivity enhancements in Na3- xPn1- xWxS4 (Pn = P, Sb) using aliovalent substitutions[J]. ACS Energy Letters, 2019, 5(1): 146-151. |
70 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589-589. |
71 | ABREHA M, SUBRAHMANYAM A R, SIVA KUMAR J. Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes[J]. Chemical Physics Letters, 2016, 658: 240-247. |
72 | ZHANG X, WANG S, XUE C, et al. Self‐suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials, 2019, 31(11): 1806082. |
73 | XU F, DENG S, GUO Q, et al. Quasi-Ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2||Li batteries with rigid-flexible coupling interphase[J]. Small Methods, 2021, 5(7): 2100262. |
74 | WEI Z, CHEN S, WANG J, et al. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery[J]. Journal of Materials Chemistry A, 2018, 6(27): 13438-13447. |
75 | CHAI J, LIU Z, MA J, et al. In Situ Generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): 1600377. |
76 | ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly(Propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24): 1501082. |
77 | TAN S J, ZENG X X, MA Q, et al. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries[J]. Electrochemical Energy Reviews, 2018, 1(2): 113-138. |
78 | DEVAUX D, GLé D, PHAN T, et al. Optimization of block copolymer electrolytes for lithium metal batteries[J]. Chemistry of Materials, 2016, 27(13): 4682-4692. |
79 | SMITH D M, QI H, WANG S, et al. Hybrid Electrolytes with controlled network structures for lithium metal batteries[J]. Advanced Materials, 2015, 27(39): 5995-6001. |
80 | FENG S, SHI D, LIU F, et al. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions[J]. Electrochimica Acta, 2013, 93: 254-263. |
81 | LALIA B S, SAMAD Y A, HASHAIKEH R. Ternary polymer electrolyte with enhanced ionic conductivity and thermo-mechanical properties for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2014, 39(6): 2964-2970. |
82 | KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. |
83 | WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. |
84 | WU J, RAO Z, CHENG Z, et al. Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(46): 1902767. |
85 | WANG Z, SHEN L, DENG S, et al. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries[J]. Advanced Materials, 2021, 33(25): 2100353. |
86 | CROCE, F, APPETECCHI, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 3943: 456-458. |
87 | KYEREMATENG N A, DUMUR F, KNAUTH P, et al. Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries[J]. Comptes Rendus Chimie, 2013, 16(1): 80-88. |
88 | ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182. |
89 | JIANG T, HE P, WANG G, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(12): 1903376. |
90 | HU C, SHEN Y, SHEN M, et al. Superionic conductors via bulk interfacial conduction[J]. Journal of the American Chemical Society, 2020, 142(42): 18035-18041. |
91 | JU J, WANG Y, CHEN B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13588-13597. |
92 | BOUKAMP B, HUGGINS R. Ionic conductivity in lithium imide[J]. Physics Letters A, 1979, 72(6): 464-466. |
93 | UNEMOTO A, MATSUO M, ORIMO S I. Complex hydrides for electrochemical energy storage[J]. Advanced Functional Materials, 2014, 24(16): 2267-2279. |
94 | MATSUO M, NAKAMORI Y, ORIMO S I, et al. Lithium superionic conduction in lithium borohydride accompanied by structural transition[J]. Applied Physics Letters, 2007, 91(22): 224103. |
95 | MATSUO M, NAKAMORI Y, YAMADA K, et al. Effects of microwave irradiation on the dehydriding reaction of the composites of lithium borohydride and microwave absorber[J]. Applied Physics Letters, 2007, 90(23): 232907. |
96 | MAEKAWA H, MATSUO M, TAKAMURA H, et al. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor[J]. Journal of the American Chemical Society, 2009, 131(3): 894-895. |
97 | MATSUO M, REMHOF A, MARTELLI P, et al. Complex hydrides with (BH4)- and (NH2)- anions as new lithium fast-ion conductors[J]. Journal of the American Chemical Society, 2009, 131(45): 16389-16391. |
98 | SVEINBJÖRNSSON D, MYRDAL J S G, BLANCHARD D, et al. Effect of heat treatment on the lithium ion conduction of the LiBH4-LiI solid solution[J]. The Journal of Physical Chemistry C, 2013, 117(7): 3249-3257. |
99 | GULINO V, BRIGHI M, DEMATTEIS E M, et al. Phase stability and fast ion conductivity in the hexagonal LiBH4-LiBr-LiCl solid solution[J]. Chemistry of Materials, 2019, 31(14): 5133-5144. |
100 | TANG W S, UNEMOTO A, ZHOU W, et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions[J]. Energy & Environmental Science, 2015, 8(12): 3637-3645. |
101 | TANG W S, MATSUO M, WU H, et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature[J]. Advanced Energy Materials, 2016, 6(8): 1502237. |
102 | TAKAHASHI K, HATTORI K, YAMAZAKI T, et al. All-solid-state lithium battery with LiBH4 solid electrolyte[J]. Journal of Power Sources, 2013, 226: 61-64. |
103 | TAKAHASHI K, MAEKAWA H, TAKAMURA H. Effects of intermediate layer on interfacial resistance for all-solid-state lithium batteries using lithium borohydride[J]. Solid State Ionics, 2014, 262: 179-182. |
104 | LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461. |
105 | ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk‐type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075. |
106 | PARK K-H, KAUP K, ASSOUD A, et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(2): 533-539. |
107 | WEPPNER W, HUGGINS R. Ionic conductivity of alkali metal chloroaluminates[J]. Physics Letters A, 1976, 58(4): 245-248. |
108 | WEPPNER W, HUGGINS R. Ionic conductivity of solid and liquid LiAlCl4[J]. Journal of the Electrochemical Society, 1977, 124(1): 35. |
109 | YAMADA K, KUMANO K, OKUDA T. Lithium superionic conductors Li3InBr6 and LiInBr4 studied by7Li,115In NMR[J]. Solid State Ionics, 2006, 177(19-25): 1691-1695. |
110 | LI X, LIANG J, CHEN N, et al. Water‐mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie International Edition, 2019, 131(46): 16579-16584. |
111 | LUTZ H, SCHMIDT W, HAEUSELER H. Chloride spinels: A new group of solid lithium electrolytes[J]. Journal of Physics and Chemistry of Solids, 1981, 42(4): 287-289. |
112 | KANNO R, TAKEDA Y, YAMAMOTO O. Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M= Mg, Mn, Fe, Cd)[J]. Materials Research Bulletin, 1981, 16(8): 999-1005. |
113 | WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 1-11. |
114 | BUCHARSKY E C, SCHELL K G, HINTENNACH A, et al. Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+ xAlxTi2- x(PO4)3[J]. Solid State Ionics, 2015, 274: 77-82. |
115 | YANG B, LI X, GUO H, et al. Preparation and properties of Li1.3Al0.3Ti1.7(PO4)3 by spray-drying and post-calcining method[J]. Journal of Alloys and Compounds, 2015, 643: 181-185. |
116 | MA F, ZHAO E, ZHU S, et al. Preparation and evaluation of high lithium ion conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte obtained using a new solution method[J]. Solid State Ionics, 2016, 295: 7-12. |
117 | BAI F, MORI D, TAMINATO S, et al. Electrical and mechanical properties of water-stable NASICON-type Li1+ xAlxGe0.2Ti1.8- x(PO4)3[J]. Solid State Ionics, 2020, 345: 115151-115158. |
118 | YANG J, HUANG Z, ZHANG P, et al. Titanium dioxide doping toward high-lithium-ion-conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramics for all-solid-state lithium batteries[J]. ACS Applied Energy Materials, 2019, 2(10): 7299-7305. |
119 | BERNUY-LOPEZ C, MANALASTAS W, LOPEZ DEL AMO J M, et al. Atmosphere controlled processing of ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chemistry of Materials, 2014, 26(12): 3610-3617. |
120 | WU J-F, PANG W K, PETERSON V K, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12461-12468. |
121 | WU J-F, CHEN E-Y, YU Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1542-1552. |
122 | WAGNER R, REDHAMMER G J, RETTENWANDER D, et al. Fast Li-ion-conducting garnet-related Li7-3 xFexLa3Zr2O12 with uncommon I4̅3d structure[J]. Chemistry of Materials, 2016, 28(16): 5943-5951. |
123 | HAMAO N, KATAOKA K, KIJIMA N, et al. Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li7- xLa3Zr2- xTaxO12 (0≤x≤0.6)[J]. Journal of the Ceramic Society of Japan, 2016, 124(6): 678-683. |
124 | DEVIANNAPOORANI C, DHIVYA L, RAMAKUMAR S, et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. Journal of Power Sources, 2013, 240: 18-25. |
125 | BUANNIC L, ORAYECH B, LóPEZ DEL AMO J M, et al. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte[J]. Chemistry of Materials, 2017, 29(4): 1769-1778. |
126 | WANG C, PING W, BAI Q, et al. A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 2020, 368(6490): 521-526. |
127 | HUANG B, XU B, LI Y, et al. Li-ion conduction and stability of perovskite Li0.375Sr0.4375Hf0.25Ta0.75O3[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14552-14557. |
128 | LI Y, XU H, CHIEN P H, et al. A perovskite electrolyte that is stable in moist air for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(28): 8587-8591. |
129 | LIU C, WANG J, KOU W, et al. A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2021, 404: 126517. |
130 | LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671. |
131 | YU C, LI Y, ADAIR K R, et al. Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries[J]. Nano Energy, 2020, 77: 105097. |
132 | LIANG J, LI X, WANG S, et al. Site-occupation-tuned superionic LixScCl3+ xHalide solid electrolytes for all-solid-state batteries[J]. J Am Chem Soc, 2020, 142(15): 7012-7022. |
133 | ZHOU L, KWOK C Y, SHYAMSUNDER A, et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries[J]. Energy & Environmental Science, 2020, 13(7): 2056-2063. |
134 | LI X, LIANG J, ADAIR K R, et al. Origin of superionic Li3Y1- xInxCl6 halide solid electrolytes with high humidity tolerance[J]. Nano Lett, 2020, 20(6): 4384-4392. |
135 | LIU Z, MA S, LIU J, et al. High Ionic Conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary[J]. ACS Energy Letters, 2020, 6(1): 298-304. |
136 | YU T, LIANG J, LUO L, et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J]. Advanced Energy Materials, 2021, 11(36): 2101915. |
137 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501. |
WU Jinghua, YAO Xiayin. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes, Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
138 | 张强, 姚霞银, 张洪周, 等. 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2016, 5(5): 659-667. |
ZHANG Qiang, YAO Xiayin, ZHANG Hongzhou, et al. Research progress on interfaces of all solid state lithium batteries. Energy Storage Science and Technology, 2016, 5(5): 659-667. | |
139 | CHU I H, NGUYEN H, HY S, et al. Insights into the performance limits of the Li7P3S11 superionic conductor: A combined first-principles and experimental study[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 7843-53. |
140 | KOERVER R, AYGüN I, LEICHTWEIß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-5582. |
141 | WENZEL S, LEICHTWEISS T, KRüGER D, et al. Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
142 | WALTHER F, STRAUSS F, WU X, et al. The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries[J]. Chemistry of Materials, 2021, 33(6): 2110-2125. |
143 | LI X, REN Z, NOROUZI BANIS M, et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2019, 4(10): 2480-2488. |
144 | YUBUCHI S, ITO Y, MATSUYAMA T, et al. 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics, 2016, 285: 79-82. |
145 | SAKUDA A, HAYASHI A, OHTOMO T, et al. All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S-P2S5 solid electrolytes[J]. Journal of Power Sources, 2011, 196(16): 6735-6741. |
146 | ASO K, SAKUDA A, HAYASHI A, et al. All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with Li2S-P2S5 solid electrolytes by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 686-690. |
147 | CAO D, ZHANG Y, NOLAN A M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Letters, 2019, 20(3): 1483-1490. |
148 | WANG C-W, REN F-C, ZHOU Y, et al. Engineering the interface between LiCoO2 and Li10GeP2S12 solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries[J]. Energy & Environmental Science, 2021, 14(1): 437-450. |
149 | HAN X, WANG S, XU Y, et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries[J]. Energy & Environmental Science, 2021, 14(9): 5044-5056. |
150 | HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508. |
151 | LIU X, ZHENG B, ZHAO J, et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries[J]. Advanced Energy Materials, 2021, 11(8): 2003583. |
152 | ZHANG Z, CHEN S, YANG J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2556-2565. |
153 | WANG C, ADAIR K R, LIANG J, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26): 1900392. |
154 | YU X, WANG L, MA J, et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(18): 1903939. |
155 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
156 | WANG Y, LAI W. High ionic conductivity lithium garnet oxides of Li7- xLa3Zr2- xTaxO12 compositions[J]. Electrochemical and Solid State Letters, 2012, 15(5): A68. |
157 | WANG C, SUN Q, LIU Y, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes[J]. Nano Energy, 2018, 48: 35-43. |
158 | WANG L, WANG Y, XIA Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte[J]. Energy & Environmental Science, 2015, 8(5): 1551-1558. |
159 | WANG W P, ZHANG J, YIN Y X, et al. A Rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries[J]. Advanced Materials, 2020, 32(23): 2000302. |
160 | LU J, ZHOU J, CHEN R, et al. 4.2 V poly (ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance[J]. Energy Storage Materials, 2020, 32: 191-198. |
161 | GAO Y, WANG D, LI Y C, et al. Salt‐based organic-inorganic nanocomposites: Towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie International Edition, 2018, 57(41): 13608-13612. |
162 | WU B, WANG S, EVANS IV W J, et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems[J]. Journal of Materials Chemistry A, 2016, 4(40): 15266-15280. |
163 | KIM S, HIRAYAMA M, TAMINATO S, et al. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte[J]. Dalton Transactions, 2013, 42(36): 13112-13117. |
164 | CHEN R J, HUANG M, HUANG W Z, et al. Sol-gel derived Li-La-Zr-O thin films as solid electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(33): 13277-13282. |
165 | AHN C-W, CHOI J-J, RYU J, et al. Microstructure and ionic conductivity in Li7La3Zr2O12 film prepared by aerosol deposition method[J]. Journal of the Electrochemical Society, 2014, 162(1): A60. |
166 | LOBE S, DELLEN C, FINSTERBUSCH M, et al. Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries[J]. Journal of Power Sources, 2016, 307: 684-689. |
167 | KAZYAK E, CHEN K-H, WOOD K N, et al. Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(8): 3785-3792. |
168 | LEE S J, BAE J H, LEE H W, et al. Electrical conductivity in Li-Si-P-O-N oxynitride thin-films[J]. Journal of Power Sources, 2003, 123(1): 61-64. |
169 | KOZEN A C, PEARSE A J, LIN C F, et al. Atomic layer deposition of the solid electrolyte LiPON[J]. Chemistry of Materials, 2015, 27(15): 5324-5331. |
170 | LU X, WU G, HOWARD J W, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity[J]. Chemical Communications, 2014, 50(78): 11520-11522. |
171 | WEI J, OGAWA D, FUKUMURA T, et al. Epitaxial strain-controlled ionic conductivity in Li-ion solid electrolyte Li0.33La0.56TiO3 thin films[J]. Crystal Growth & Design, 2015, 15(5): 2187-2191. |
172 | SHI J, XIA Y, HAN S, et al. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries[J]. Journal of Power Sources, 2015, 273: 389-395. |
173 | YAN Z, PAN H Y, WANG J Y, et al. Enhancing cycle stability of Li metal anode by using polymer separators coated with Ti-containing solid electrolytes[J]. Rare Metals, 2021, 40(6): 1357-1365. |
174 | JIANG Z, WANG S, CHEN X, et al. Tape‐casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium‐metal batteries[J]. Advanced Materials, 2020, 32(6): 1906221. |
175 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Scientific reports, 2018, 8(1): 1-10. |
176 | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. |
177 | ZHANG Z, WU L, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. |
178 | YANG Q, HUANG J, LI Y, et al. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries[J]. Journal of Power Sources, 2018, 388: 65-70. |
179 | NIE K, WANG X, QIU J, et al. Increasing poly (ethylene oxide) stability to 4.5 V by surface coating of the cathode[J]. ACS Energy Letters, 2020, 5(3): 826-832. |
180 | WANG Y, ZHANG Q, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413. |
181 | 崔龙飞, 鞠江伟, 崔光磊. 三维多孔陶瓷骨架增强的复合电解质[J]. 物理学报, 2020, 69(22): 99-112. |
CUI Longfei, JU Jiangwei, CUI Guanglei. Three-dimensional porous ceramic framework reinforcing composite electrolyte[J]. ActaPhysica Sinica, 2020, 69(22): 99-112. | |
182 | FU K K, GONG Y, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575. |
183 | ZHANG Z, CHEN S, YAO X, et al. Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures[J]. Energy Storage Materials, 2020, 24: 714-718. |
184 | XU R, YUE J, LIU S, et al. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): 1073-1079. |
[1] | 翟朋博, 常冬梅, 毕志杰, 赵宁, 郭向欣. 锂镧锆氧(LLZO)基固态锂电池界面关键问题研究进展[J]. 储能科学与技术, 2022, 11(9): 2847-2865. |
[2] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[3] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[4] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[5] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[6] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[7] | 杜昭, 阳康, 舒高, 韦攀, 杨肖虎. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
[8] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
[9] | 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.4.1—2021.5.31)[J]. 储能科学与技术, 2021, 10(4): 1237-1252. |
[10] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
[11] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[12] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[13] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[14] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
[15] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||