储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3447-3454.doi: 10.19799/j.cnki.2095-4239.2022.0340

• 储能材料与器件 • 上一篇    下一篇

基于锂掺杂分子筛改性隔膜的高性能锂硫电池

王小飞(), 蓝大为, 张道明, 薛浩亮, 周思飞, 刘闯, 李骏(), 王振东   

  1. 绿色化工与工业催化国家重点实验室,中国石化上海石油化工研究院,上海 201208
  • 收稿日期:2022-06-20 修回日期:2022-07-25 出版日期:2022-11-05 发布日期:2022-11-09
  • 通讯作者: 李骏 E-mail:wangxf.sshy@sinopec.com;lijun.sshy@sinopec.com
  • 作者简介:王小飞(1993—),男,硕士,工程师,研究方向为锂离子电池、锂硫电池等二次电池,E-mail: wangxf.sshy@sinopec.com

High-performance lithium-sulfur batteries enabled by a separator modified by lithium-doped zeolite

Xiaofei WANG(), Dawei LAN, Daoming ZHANG, Haoliang XUE, Sifei ZHOU, Chuang LIU, Jun LI(), Zhendong WANG   

  1. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
  • Received:2022-06-20 Revised:2022-07-25 Online:2022-11-05 Published:2022-11-09
  • Contact: Jun LI E-mail:wangxf.sshy@sinopec.com;lijun.sshy@sinopec.com

摘要:

锂硫电池在下一代高能量密度可充电电池中极具吸引力,但多硫化物严重的穿梭效应阻碍了它的实际应用。本工作利用离子交换法成功地制备了一种锂掺杂分子筛(Li@CHA),并将其与氧化石墨烯(GO)结合用于修饰常规聚丙烯隔膜,以缓解锂硫电池的穿梭效应问题。借助扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、氮气吸-脱附法以及电化学测试,深入研究了Li@CHA的形貌、结构及用于锂硫电池的电化学性能。研究显示,Li@CHA可在隔膜表面充当“离子筛”,有效抑制多硫化物阴离子的自由穿梭,并提高锂离子的传输性能。此外,GO也可以通过化学吸附进一步抑制穿梭效应,并改善修饰层的导电性,降低电池阻抗。因此,采用这种改性隔膜的锂硫电池表现出增强的反应动力学、出色的倍率性能和稳定的循环性能,在3 C下获得了638 mAh/g的高倍率容量,在0.5 C下循环500圈后仍具有71.0%的高容量保持率。本工作为抑制多硫化物的穿梭效应提供了一条新的思路,有望进一步推动锂硫电池的实际应用。

关键词: 分子筛, 锂掺杂, 隔膜, 穿梭效应, 锂硫电池

Abstract:

Although lithium-sulfur batteries are attractive for next-generation high-energy-density rechargeable batteries, their practical uses are limited by the severe shuttle effect of polysulfides. In this study, a lithium-doped zeolite (Li@CHA) was effectively prepared using an ion-exchange technique and combined with graphene oxide (GO) to alter the conventional polypropylene separator to alleviate the shuttling problem of lithium-sulfur batteries. The morphology, structure, and electrochemical performance of Li@CHA were thoroughly studied using a scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray powder diffraction, and nitrogen adsorption-desorption technique and electrochemical measurements. The results revealed that the Li@CHA could act as an "ionic sieve" of the separator, efficiently hindering the free shuttle of polysulfide anions and enhancing the transport performance of Li+. Additionally, GO could suppress the shuttle effect through chemisorption, and improve the conductivity of the altered layer, thereby reducing the impedance of the battery. Hence, the lithium-sulfur battery employing the modified separator demonstrated enhanced reaction kinetics, excellent rate capability, and stable cycling performance, achieving a high rate capacity of 638 mAh/g at 3 C and a high capacity retention rate of 71.0% after 500 cycles at 0.5 C. This work provides a novel idea for suppressing the shuttle effect of polysulfides, which is anticipated to further promote the practical application of lithium-sulfur batteries.

Key words: zeolite, lithium-doped, separator, shuttle effect, lithium-sulfur batteries

中图分类号: