1 |
LI Y J, GAO T T, NI D Y, et al. Two birds with one stone: Interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(5): doi: 10.1002/adma.202107638.
|
2 |
TU S B, CHEN X, ZHAO X X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(45): doi: 10.1002/adma.201804581.
|
3 |
HOU L P, ZHANG X Q, YAO N, et al. An encapsulating lithium-polysulfide electrolyte for practical lithium-sulfur batteries[J]. Chem, 2022, 8(4): 1083-1098.
|
4 |
SUN M L, WANG X F, WANG J, et al. Assessment on the self-discharge behavior of lithium-sulfur batteries with LiNO3-possessing electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35175-35183.
|
5 |
WANG X F, QIAN Y M, WANG L N, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Advanced Functional Materials, 2019, 29(39): doi: 10.1002/adfm. 201902929.
|
6 |
WANG J, FU C M, WANG X F, et al. Three-dimensional hierarchical porous TiO2/graphene aerogels as promising anchoring materials for lithium-sulfur batteries[J]. Electrochimica Acta, 2018, 292: 568-574.
|
7 |
LI H L, WANG X F, QI C, et al. Self-assembly of MoO3-decorated carbon nanofiber interlayers for high-performance lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(4): 2157-2163.
|
8 |
黄佳琦, 孙滢智, 王云飞, 等. 锂硫电池先进功能隔膜的研究进展[J]. 化学学报, 2017, 75(2): 173-188.
|
|
HUANG J Q, SUN Y Z, WANG Y F, et al. Review on advanced functional separators for lithium-sulfur batteries[J]. Acta Chimica Sinica, 2017, 75(2): 173-188.
|
9 |
TONG Z M, HUANG L, LEI W, et al. Carbon-containing electrospun nanofibers for lithium-sulfur battery: Current status and future directions[J]. Journal of Energy Chemistry, 2021, 54: 254-273.
|
10 |
HUANG J Q, ZHUANG T Z, ZHANG Q, et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries[J]. ACS Nano, 2015, 9(3): 3002-3011.
|
11 |
TONG Z M, HUANG L, LIU H P, et al. Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry[J]. Advanced Functional Materials, 2021, 31(11): doi: 10.1002/adfm. 202010455.
|
12 |
LI Y P, DA LEI, JIANG T Y, et al. P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 426: doi: 10.1016/j.cej.2021.131798.
|
13 |
LEI D, SHANG W Z, ZHANG X, et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries[J]. ACS Nano, 2021, 15(12): 20478-20488.
|
14 |
ZHOU M J, LI Y Y, LEI T Y, et al. Ion-inserted metal-organic frameworks accelerate the mass transfer kinetics in lithium-sulfur batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(44): doi: 10.1002/smll.202104367.
|
15 |
QI C, XU L, WANG J, et al. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12968-12975.
|
16 |
BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: 16094.
|
17 |
LI Y, YU J H. New stories of zeolite structures: Their descriptions, determinations, predictions, and evaluations[J]. Chemical Reviews, 2014, 114(14): 7268-7316.
|
18 |
MOLINER M, MARTÍNEZ C, CORMA A. Multipore zeolites: Synthesis and catalytic applications[J]. Angewandte Chemie (International Ed in English), 2015, 54(12): 3560-3579.
|
19 |
LI Y, YU J H. Emerging applications of zeolites in catalysis, separation and host-guest assembly[J]. Nature Reviews Materials, 2021, 6(12): 1156-1174.
|
20 |
MSAYIB K J, BOOK D, BUDD P M, et al. Nitrogen and hydrogen adsorption by an organic microporous crystal[J]. Angewandte Chemie (International Ed in English), 2009, 48(18): 3273-3277.
|
21 |
ZUO Y Z, ZHU Y J, WANG Q, et al. Promoting polysulfide conversion by catalytic separator with LiNiPO4 and rGO hybrids for high performance Li-S batteries[J]. Journal of Materials Chemistry A, 2020, 8(38): 20111-20121.
|
22 |
WANG Y, ZHU L F, WANG J X, et al. Enhanced chemisorption and catalytic conversion of polysulfides via CoFe@NC nanocubes modified separator for superior Li-S batteries[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133792.
|
23 |
ZHU X B, OUYANG Y, CHEN J W, et al. In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(7): 3253-3263.
|
24 |
CHENG H, LIU H Y, JIN H, et al. Suppression of polysulfide shuttling with a separator modified using spontaneously polarized bismuth ferrite for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(32): 16429-16436.
|