1 |
MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223.
|
2 |
MANTHIRAM A, SONG B H, LI W D. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017, 6: 125-139.
|
3 |
LIU W, OH P, LIU X E, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2015, 54(15): 4440-4457.
|
4 |
NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130.
|
5 |
YOON C S, CHOI M H, LIM B B, et al. Review—high-capacity Li[Ni1- xCox/2Mnx/2]O2(x=0.1, 0.05, 0) cathodes for next-generation Li-ion battery[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2.0101514jes.
|
6 |
XU C, REEVES P J, JACQUET Q, et al. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): doi: 10.1002/aenm.202003404.
|
7 |
SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017, 29(19): 8486-8493.
|
8 |
LI H Y, LIU A, ZHANG N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31(18): 7574-7583.
|
9 |
RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1- x- y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30(3): 1155-1163.
|
10 |
ISHIDZU K, OKA Y, NAKAMURA T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2[J]. Solid State Ionics, 2016, 288: 176-179.
|
11 |
HEENAN T M M, WADE A, TAN C, et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(47): doi: 10.1002/aenm.202002655.
|
12 |
ROMANO BRANDT L, MARIE J J, MOXHAM T, et al. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle[J]. Energy & Environmental Science, 2020, 13(10): 3556-3566.
|
13 |
MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives[J]. Advanced Energy Materials, 2016, 6(1): doi: 10.1002/aenm.201501010.
|
14 |
WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity fade of LiAlyNi1- x- yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1- x- yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)[J]. Journal of Power Sources, 2014, 258: 210-217.
|
15 |
KO D S, PARK J H, YU B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: A comprehensive structural, chemical, and electrical analysis[J]. Advanced Energy Materials, 2020, 10(36): doi: 10.1002/aenm.202001035.
|
16 |
LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227263.
|
17 |
DUBARRY M, TRUCHOT C, LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources, 2012, 219: 204-216.
|
18 |
KEEFE A S, BUTEAU S, HILL I G, et al. Temperature dependent EIS studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells[J]. Journal of the Electrochemical Society, 2019, 166(14): doi: 10.1149/2.0541914jes.
|
20 |
周江, 刘益, 马洪运, 等. 水分对NCA/石墨软包电芯的影响[J]. 电源技术, 2018, 42(10): 1430-1433, 1592.
|
|
ZHOU J, LIU Y, MA H Y, et al. Impact of moisture on NCA/Graphite pouch cells[J]. Chinese Journal of Power Sources, 2018, 42(10): 1430-1433, 1592.
|
21 |
LI J, HARLOW J, STAKHEIKO N, et al. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2[J]. Journal of the Electrochemical Society, 2018, 165(11): doi: 10.1149/2.0491811jes.
|
22 |
LIU H, WOLFMAN M, KARKI K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes[J]. Nano Letters, 2017, 17(6): 3452-3457.
|
23 |
凌仕刚, 吴娇杨, 张舒, 等. 锂离子电池基础科学问题(Ⅻ Ⅰ)——电化学测量方法[J]. 储能科学与技术, 2015, 4(1): 83-103.
|
|
LING S G, WU J Y, ZHANG S, et al. Fundamental scientific aspects of lithium ion batteries(Ⅻ Ⅰ)——Electrochemical measurement[J]. Energy Storage Science and Technology, 2015, 4(1): 83-103.
|
24 |
孙腊梅, 朱令之, 韩恩山, 等. Mn含量对锂电池正极材料Li(Ni0.9- xCo0.1Mnx)O2性能影响[J]. 电源技术, 2019, 43(9): 1423-1426.
|
|
SUN L M, ZHU L Z, HAN E S, et al. Effect of Mn content on the performance of Li(Ni0.9- xCo0.1Mnx)O2(x=0.1-0.3) cathode material for lithium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(9): 1423-1426.
|
25 |
LUO K, ROBERTS M R, HAO R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7): 684-691.
|
26 |
WANG B, ZHANG F L, ZHOU X A, et al. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?[J]. Journal of Materials Chemistry A, 2021, 9(23): 13540-13551.
|
27 |
LIN Q Y, GUAN W H, MENG J, et al. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries[J]. Nano Energy, 2018, 54: 313-321.
|