储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 51-60.doi: 10.19799/j.cnki.2095-4239.2022.0434

• 储能材料与器件 • 上一篇    下一篇

高镍NCANCMNCMA材料循环容量衰减机理研究

俎梦杨1,2, 张梦1, 李子坤1, 黄令2   

  1. 1.贝特瑞新材料集团股份有限公司,广东 深圳 518106
    2.厦门大学化学化工学院化学系,福建 厦门 361005
  • 收稿日期:2022-08-05 修回日期:2022-09-16 出版日期:2023-01-05 发布日期:2023-02-08
  • 通讯作者: 俎梦杨
  • 作者简介:俎梦杨(1991—),女,博士,主要研究方向为锂离子电池关键材料及表界面过程研究,E-mail:zumengyang@btrchina.com。

Cycle performance and degradation mechanism of Ni-Rich NCANCMand NCMA

Mengyang ZU1,2, Meng ZHANG1, Zikun LI1, Ling HUANG2   

  1. 1.BTR New Material Group Co. , Ltd. , Shenzhen 518106, Guangdong, China
    2.Department of chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2022-08-05 Revised:2022-09-16 Online:2023-01-05 Published:2023-02-08
  • Contact: Mengyang ZU

摘要:

为了对比铝(Al)、锰(Mn)元素对高镍正极材料循环性能的影响,明确镍钴铝(NCA)、镍钴锰(NCM)及镍钴锰铝(NCMA)三类高镍正极材料循环稳定性的差别以及循环过程中失效机理的差异,本工作选用3种相同镍含量的NCA、NCM及NCMA高镍正极材料对其循环性能以及循环过程中三者结构变化异同点进行了研究。研究结果证实,常温下3款高镍正极材料的循环性能排序为NCA>NCMA>NCM。通过微分容量(dQ/dV)曲线、扫描电子显微镜(SEM)等分析发现,相同阶段3种材料结构破坏程度排序为NCM>NCMA>NCA,电池在循环过程中的容量衰减很大程度上源自正极材料的结构破坏;进一步对3款正极材料在不同循环阶段的电化学交流阻抗谱(EIS)进行分析,发现循环过程中正极阻抗持续增大,且阻抗的增大明显受到晶体及二次颗粒结构变化的影响,电池循环稳定性与正极材料本身结构稳定性密切相关,最终造成3款高镍正极材料循环性能的差异。通过对三者循环性能的系统性对比与分析,加深了对高镍正极材料成分-结构-性能关系的理解,对于提升高镍正极材料的稳定性研究具有重要指导作用。

关键词: 高镍正极材料, 容量衰减, 循环稳定性, 结构变化

Abstract:

To compare the effects of aluminum and manganese elements on the cycle performance of high-nickel cathode materials and further determine the differences in cycling stability and degradation mechanisms of nickel-cobalt-aluminum (NCA), nickel-cobalt-manganese (NCM), and nickel-cobalt-manganese-aluminum (NCMA), three common NCA, NCM, and NCMA high-nickel cathode materials with the same nickel content were chosen to study their similarities and differences of the cycle performance and the structural changes. The outcomes show that the three high-nickel cathode materials' cycle performance under room temperature is in the order of NCA>NCMA>NCM. Additionally, discovered by differential capacity (dQ/dV) curve and scanning electron microscopy, the degree of structural damages of the three materials at the same stage is in the order of NCM>NCMA>NCA, and the capacity decay of the battery during cycling is primarily caused the structural damages of the cathode materials. More study was performed on the cathode materials by electrochemical impedance spectroscopy at various cycle stages. It was discovered that the impedance of the cathodes continued to increase during cycling, and the impedance increase was influenced by the modifications in the crystal and the secondary particle structures. The discrepancies in the cycle performance of the three high-nickel cathode materials would ultimately be caused because the cycle stability of the cells is directly tied to the structural stability of the cathode materials. Systematic comparison and analysis of the cycle performance of NCA, NCMA, and NCM are helpful to deepen the understanding of the composition-structure-performance relationship of high-nickel content cathode materials, and it is of great significance for improving their cycle stabilities.

Key words: Ni-rich cathode materials, capacity loss, cycle stability, structural changes

中图分类号: