1 |
REN M, LU P T, LIU X R, et al. Decarbonizing China's iron and steel industry from the supply and demand sides for carbon neutrality[J]. Applied Energy, 2021, 298: doi: 10.1016/j.apenergy.2021.117209.
|
2 |
舒钊, 钟珂, 肖鑫, 等. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278.
|
|
SHU Z, ZHONG K, XIAO X, et al. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278.
|
3 |
徐子杰, 王燕. 多孔基无机复合相变材料的蓄热特性[J]. 储能科学与技术, 2022, 11(10): 3171-3179.
|
|
XU Z J, WANG Y. Thermal storage properties of porous inorganic composite phase change material[J]. Energy Storage Science and Technology, 2022, 11(10): 3171-3179.
|
4 |
WU S F, YAN T, KUAI Z H, et al. Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage[J]. Solar Energy, 2020, 205: 474-486.
|
5 |
FAN R J, ZHENG N B, SUN Z Q. Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules[J]. International Journal of Heat and Mass Transfer, 2021, 166: doi: 10.1016/j.ijheatmasstransfer.2020.120753.
|
6 |
LI J W, ZHANG H Y. Thermal characteristics of power battery module with composite phase change material and external liquid cooling[J]. International Journal of Heat and Mass Transfer, 2020, 156: doi: 10.1016/j.ijheatmasstransfer.2020.119820.
|
7 |
BONDAREVA N S, BUONOMO B, MANCA O, et al. Heat transfer inside cooling system based on phase change material with alumina nanoparticles[J]. Applied Thermal Engineering, 2018, 144: 972-981.
|
8 |
田伟, 梁晓光, 党硕, 等. 金属泡沫-翅片复合结构强化相变蓄热的实验研究[J]. 西安交通大学学报, 2021, 55(11): 17-24.
|
|
TIAN W, LIANG X G, DANG S, et al. Visualized experimental study on the phase change heat storage enhanced with metal foam[J]. Journal of Xi'an Jiaotong University, 2021, 55(11): 17-24.
|
9 |
LI W Q, WAN H, JING T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421.
|
10 |
WANG Z L, ZHANG H, DOU B L, et al. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials[J]. Applied Thermal Engineering, 2022, 201: doi: 10.1016/j.applthermaleng.2021.117778.
|
11 |
LIU Q, FENG X B, HE Y L, et al. Three-dimensional multiple-relaxation-time lattice Boltzmann models for single-phase and solid-liquid phase-change heat transfer in porous media at the REV scale[J]. Applied Thermal Engineering, 2019, 152: 319-337.
|
12 |
贾兴龙, 陈宝明, 张艳勇, 等. 梯度骨架对固液相变蓄热特性影响研究[J]. 山东建筑大学学报, 2020, 35(5): 56-63.
|
|
JIA X L, CHEN B M, ZHANG Y Y, et al. Study on the effect of gradient skeleton on the heat storage characteristics of solid-liquid phase change[J]. Journal of Shandong Jianzhu University, 2020, 35(5): 56-63.
|
13 |
HUO Y T, GUO Y Q, RAO Z H. Investigation on the thermal performance of phase change material/porous medium-based battery thermal management in pore scale[J]. International Journal of Energy Research, 2019, 43(2): 767-778.
|
14 |
HAN Q, WANG H, YU C, et al. Lattice Boltzmann simulation of melting heat transfer in a composite phase change material[J]. Applied Thermal Engineering, 2020, 176: doi: 10.1016/j.applthermaleng.2020.115423.
|
15 |
JOURABIAN M, DARZI A A R, TOGHRAIE D, et al. Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 509: 316-335.
|
16 |
REN Q L, MENG F L, GUO P H. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1214-1228.
|
17 |
BECKERMANN C, VISKANTA R. Natural convection solid/liquid phase change in porous media[J ]. International Journal of Heat and Mass Transfer, 1988, 31(1): 35-46.
|
18 |
MENCINGER J. Numerical simulation of melting in two-dimensional cavity using adaptive grid[J]. Journal of Computational Physics, 2004, 198(1): 243-264.
|