1 |
李勇, 郭蓓, 黄官飞, 等. 太阳能热发电复合相变蓄热材料的实验研究[J]. 西安交通大学学报, 2014, 48(3): 49-53, 95.
|
|
LI Y, GUO B, HUANG G F, et al. Experimental investigation on phase change thermal storage material composite for solar energy thermal power[J]. Journal of Xi'an Jiaotong University, 2014, 48(3): 49-53, 95.
|
2 |
李新禹, 李朋, 韩忠贤, 等. 弯曲角度对扁平热管传热性能的影响[J]. 储能科学与技术, 2020, 9(3): 840-847.
|
|
LI X Y, LI P, HAN Z X, et al. Effect of bending angle on heat transfer performance of flat heat pipe[J]. Energy Storage Science and Technology, 2020, 9(3): 840-847.
|
3 |
刘丽辉, 张航, 彭子安, 等. 板式相变储能换热器的性能优化[J]. 储能科学与技术, 2021, 10(5): 1745-1752.
|
|
LIU L H, ZHANG H, PENG Z A, et al. Energy storage optimization of a plate-type phase change heat exchanger[J]. Energy Storage Science and Technology, 2021, 10(5): 1745-1752.
|
4 |
张平, 康利斌, 王明菊, 等. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901.
|
|
ZHANG P, KANG L B, WANG M J, et al. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901.
|
5 |
徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190.
|
|
XU Z G, ZHAO C Y, JI Y N, et al. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2014, 3(3): 179-190.
|
6 |
MAO Q J. Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 320-327.
|
7 |
毛前军, 刘宁, 彭丽. 一种新型复合相变蓄热材料的制备与表征[J]. 可再生能源, 2018, 36(10): 1574-1580.
|
|
MAO Q J, LIU N, PENG L. Preparation and characterization of a novel composite thermal storage phase change material[J]. Renewable Energy Resources, 2018, 36(10): 1574-1580.
|
8 |
毛前军, 刘宁, 彭丽. 双圆台型高温太阳能蓄热系统传热特性研究[J]. 太阳能学报, 2021, 42(3): 191-196.
|
|
MAO Q J, LIU N, PENG L. Study on heat transfer characteristics of double-truncated cone storage tank in csp plant[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 191-196.
|
9 |
冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176.
|
|
FENG G H, WANG T Y, WANG G. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank[J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176.
|
10 |
MAO Q J, HU X L, LI T. Study on heat storage performance of a novel vertical shell and multi-finned tube tank[J]. Renewable Energy, 2022, 193: 76-88.
|
11 |
RATHOD M K, BANERJEE J. Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins[J]. Applied Thermal Engineering, 2015, 75: 1084-1092.
|
12 |
ABDULATEEF A M, MAT S, ABDULATEEF J, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1620-1635.
|
13 |
AGYENIM F, EAMES P, SMYTH M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins[J]. Solar Energy, 2009, 83(9): 1509-1520.
|
14 |
ZHANG C B, LI J, CHEN Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: doi: 10.1016/j.apenergy. 2019.114102.
|
15 |
HUANG Y P, LIU X D. Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins[J]. Renewable Energy, 2021, 174: 199-217.
|
16 |
SAFARI V, ABOLGHASEMI H, KAMKARI B. Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins[J]. Renewable Energy, 2021, 174: 102-121.
|
17 |
ZHENG J Y, WANG J, CHEN T T, et al. Solidification performance of heat exchanger with tree-shaped fins[J]. Renewable Energy, 2020, 150: 1098-1107.
|
18 |
张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530.
|
|
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530.
|
19 |
PAHAMLI Y, HOSSEINI M J, ARDAHAIE S S, et al. Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis[J]. Renewable Energy, 2022, 182: 192-215.
|
20 |
ABDI A, MARTIN V, CHIU J N W. Numerical investigation of melting in a cavity with vertically oriented fins[J]. Applied Energy, 2019, 235: 1027-1040.
|
21 |
MAO Q J, CHEN K L, LI T. Heat transfer performance of a phase-change material in a rectangular shell-tube energy storage tank[J]. Applied Thermal Engineering, 2022, 215: doi: 10.1016/j.applthermaleng.2022.118937.
|
22 |
FADL M, EAMES P C. Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems[J]. Applied Thermal Engineering, 2019, 151: 90-99.
|
23 |
MAT S, AL-ABIDI A A, SOPIAN K, et al. Enhance heat transfer for PCM melting in triplex tube with internal-external fins[J]. Energy Conversion and Management, 2013, 74: 223-236.
|
24 |
KHAN L A, KHAN M M. Role of orientation of fins in performance enhancement of a latent thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 175: doi: 10.1016/j.applthermaleng. 2020.115408.
|