储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 86-110.doi: 10.19799/j.cnki.2095-4239.2022.0413

• 储能材料与器件 • 上一篇    下一篇

钠离子电池锰酸钠正极材料研究进展与发展趋势

张凯(), 徐友龙()   

  1. 西安交通大学,电子材料教育部重点实验室&国际电介质研究中心,陕西省先进储能电子材料与器件工程研究中心,陕西 西安 710049
  • 收稿日期:2022-07-25 修回日期:2022-09-15 出版日期:2023-01-05 发布日期:2023-02-08
  • 通讯作者: 徐友龙 E-mail:zhangkai808@stu.xjtu.edu.cn;ylxu@mail.xjtu.edu.cn
  • 作者简介:张凯(1999—),男,硕士研究生,主要研究方向为钠离子电池正极材料,E-mail:zhangkai808@stu.xjtu.edu.cn
  • 基金资助:
    西安市重大科技创新平台及科技成果就地转化项目(20KYPT0001-06);陕西省重点研发计划(2017ZDCXL-GY-08-02);111项目(B14040)

Research progress and development trend of sodium manganate cathode materials for sodium ion batteries

Kai ZHANG(), Youlong XU()   

  1. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2022-07-25 Revised:2022-09-15 Online:2023-01-05 Published:2023-02-08
  • Contact: Youlong XU E-mail:zhangkai808@stu.xjtu.edu.cn;ylxu@mail.xjtu.edu.cn

摘要:

近年来,钠离子电池凭借钠资源储量丰富、分布广泛、价格低廉、绿色可持续发展、安全稳定、集成效率高、快速充电性能优异、低温性能好等一系列优势被认为是锂离子电池当前最好且最有发展前景的互补品,也是未来发展大规模电化学储能最具前景的系统之一。然而阻碍钠离子电池发展的因素是正极材料体系结构易发生相变、放电比容量不够高、循环性能不够好等问题。目前,钠离子电池正极材料的研究中过渡金属氧化物材料表现出更多样的结构种类、更优的结构稳定性、更高的比容量、良好的充放电循环性能和其他优异的电化学性能。本文针对锰酸钠正极材料微观以及宏观结构的研究进展进行归纳总结,着重对不同钠含量的锰酸钠材料通过三种不同位点(钠位、锰位和氧位)掺杂以及包覆的手段进行系统深入的研究,详细展示并论述了不同元素不同位点掺杂以及不同包覆手段所带来的增益效果。在未来的发展过程中,应加强对微观宏观结构的进一步提升,拓展多元素多位点掺杂种类、掺杂比例、搭配类型和包覆材料种类等,提升包覆技术,并不断加强钠离子电池电解液、负极材料等配件的创新与发展。

关键词: 钠离子电池, 正极材料, 锰酸钠, 不同位点掺杂, 包覆

Abstract:

In recent years, sodium-ion batteries have been regarded as the best and most promising complement to lithium-ion batteries at present, as well as one of the most promising systems for their future development of large-scale electrochemical energy storage, owing to a number of advantages including abundant sodium raw material reserves, wide distribution, low price, green sustainability, safety and stability, high integration efficiency, excellent fast charging performance, and good low temperature performance. However, the factors that hinder the development of sodium ion batteries are the cathode material architecture is prone to phase change, the discharge specific capacity is not very high, and the cycle performance is not very good. At present, the research on cathode materials for sodium ion batteries has shown more diverse structural types, excellent structural stability, higher specific capacity, good charge/discharge cycling performance and other excellent electrochemical properties of transition metal oxide materials. In this paper, we summarize the progress of the research on the microstructure and macrostructure of sodium manganate cathode materials, focusing on the systematic and in-depth study of sodium manganate materials with different sodium contents by means of doping and coating at three different sites (sodium, manganese and oxygen sites), and the gain buff effects brought about by the doping of different elements, doping at different sites and different coating methods are demonstrated and discussed in detail. In the future development process, we should strengthen the further improvement of the micro and macro structure, expand the multi-element, multi-site doping types, doping ratios, matching types and coating material types, etc., improve the coating technology, and continuously strengthen the innovation and development of accessories such as sodium-ion battery electrolyte and anode materials.

Key words: sodium ion batteries, cathode materials, sodium manganate, doping at different sites, coating

中图分类号: