储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 111-119.doi: 10.19799/j.cnki.2095-4239.2022.0390
收稿日期:
2022-07-12
修回日期:
2022-09-26
出版日期:
2023-01-05
发布日期:
2023-02-08
通讯作者:
宋文吉
E-mail:chenyz@ms.giec.ac.cn;songwj@ms.giec.ac.cn
作者简介:
陈永珍(1985— ),女,硕士,工程师,研究方向为储能材料,E-mail:chenyz@ms.giec.ac.cn;
Yongzhen CHEN(), Ying HAN, Wenji SONG(), Ziping FENG
Received:
2022-07-12
Revised:
2022-09-26
Online:
2023-01-05
Published:
2023-02-08
Contact:
Wenji SONG
E-mail:chenyz@ms.giec.ac.cn;songwj@ms.giec.ac.cn
摘要:
随着全球“减碳”目标的提出,氢气被认为是最理想的清洁能源,但是制取成本高、储存及运输困难等问题限制了氢的大规模能源化应用。氨作为氢的载体,具有“零碳”意义的绿氨越来越引起各国重视。本文通过对近期相关文献的探讨,综述了绿氨能源化的前景及氨燃料应用的进展。介绍了绿氨的来源,从绿氨生产成本、技术成熟度及政策因素等方面,分析绿氨规模化应用前景及面临的挑战。船舶运输及发电等是氨燃料的重要目标应用领域,但是还需要进一步解决氨的安全性、掺烧理论以及燃烧系统改造等难题。氨燃料电池是氨能源化的重要技术,本文详细介绍了氨燃料电池的研究进展,包括氧离子导电电解质固体氧化物氨燃料电池、质子传导电解质固体氧化物氨燃料电池、质子膜氨燃料电池和碱性氨燃料电池等。综合分析表明,全球减碳政策驱动因素是现阶段绿氨发展的重要推动力。质子膜氨燃料电池和碱性氨燃料电池在短期内将无法满足氨燃料的规模化应用,而固体氧化物燃料电池具有高度的燃料灵活性,是最有前景的氨燃料电池类型。
中图分类号:
陈永珍, 韩颖, 宋文吉, 冯自平. 绿氨能源化及氨燃料电池研究进展[J]. 储能科学与技术, 2023, 12(1): 111-119.
Yongzhen CHEN, Ying HAN, Wenji SONG, Ziping FENG. Research progress of green ammonia energy and ammonia fuel cell[J]. Energy Storage Science and Technology, 2023, 12(1): 111-119.
表1
基于常规高压氨合成回路的棕氨、蓝氨和绿氨的能量需求和CO2 足迹[5]"
Item | Energy requirement(GJ/ | CO2 footprint( | Relative investment | ||
---|---|---|---|---|---|
BAT | Potential | BAT | Potential | ||
Brown ammonia | 26 | 26 | 1.6 | 1.6 | 1.0 |
SMR | 26 | 26 | 1.6 | 1.6 | 1.0 |
Naphtha | 35 | — | 2.5 | — | 1.1~1.2 |
Heavy fuel oil | 38 | — | 3.0 | — | 1.5 |
Coal | 42 | — | 3.6 | — | 1.8~2.1 |
Blue ammonia | 33 | 26 | 0.4 | 0.2 | 1.5 |
Byproduct hydrogen | — | — | 1.5~1.6 | 0.6 | — |
SMR with CCS | 33 | 27 | 0.4 | 0.2 | 1.5 |
Coal with CCS | 57 | — | 1.0~2.0 | 0.5 | 2.5~3.0 |
eSMR | — | 26 | — | 1.1 | 1.0 |
Green ammonia | 33 | 26 | 0.1 | 0.0 | 1.2~1.5 |
Low temperature electrolysis | 33 | 31 | 0.1 | 0.0 | 1.2~1.5 |
High temperature electrolysis | — | 26 | — | 0.0 | 1.5~2.0 |
Biomass (with CCS) | — | 33 | 1.1~1.2 | 0.5 | 1.2~3.0 |
Global average | 35 | 27 | 2.0 | 1.4 | — |
1 | WANG M, KHAN M A, MOHSIN I, et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energy & Environmental Science, 2021, 14(5): 2535-2548. |
2 | 徐静颖, 朱鸿玮, 徐义书, 等. 燃煤电站锅炉氨燃烧研究进展及展望[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 55-65. |
XU J Y, ZHU H W, XU Y S, et al. Research progress and prospect of ammonia cofiring in utility coal-fired boiler[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 55-65. | |
3 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU H Z. Ammonia synthesis industry: Past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
4 | ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. |
5 | AGUSTIN V M, RENE B A. Techno-economic challenges of green ammonia as an energy vector[M]. Amsterdam: Elsevier, 2021. |
6 | FRATTINI D, CINTI G, BIDINI G, et al. A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants[J]. Renewable Energy, 2016, 99: 472-482. |
7 | NAYAK-LUKE R M, CESARO Z, BAÑARES-ALCÁNTARA R. Pathways for green ammonia[M]//Techno-Economic Challenges of Green Ammonia as an Energy Vector. Amsterdam: Elsevier, 2021: 27-39. |
8 | 王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业, 2018, 36(6): 13-18. |
WANG M. The status quo and trend of producing hydrogen from new energy[J]. Chemical Industry, 2018, 36(6): 13-18. | |
9 | 李伟, 杨易嘉, 顾亚京, 等. 基于海洋能的海水资源综合利用研究[J]. 中国工程科学, 2019, 21(6): 33-38. |
LI W, YANG Y J, GU Y J, et al. Comprehensive utilization of seawater resources based on ocean energy[J]. Strategic Study of CAE, 2019, 21(6): 33-38. | |
10 | JEERH G, ZHANG M F, TAO S W. Recent progress in ammonia fuel cells and their potential applications[J]. Journal of Materials Chemistry A, 2021, 9(2): 727-752. |
11 | 郭朋彦, 申方, 王丽君, 等. 氨燃料发动机研究现状及发展趋势[J]. 车用发动机, 2016(3): 1-5, 13. |
GUO P Y, SHEN F, WANG L J, et al. Research status and development trend for ammonia-fueled engines[J]. Vehicle Engine, 2016(3): 1-5, 13. | |
12 | 王智化, 余作超, 陈晨霖, 等. 新型零碳氨燃料的燃烧特性研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 24-40, 78. |
WANG Z H, YU Z C, CHEN C L, et al. Research progress on combustion characteristics of new zero carbon ammonia fuel[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 24-40, 78. | |
13 | 夏鑫, 蔺建民, 李妍, 等. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339. |
XIA X, LIN J M, LI Y, et al. Research progress on performance and application of ammonia fuel on engines[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2332-2339. | |
14 | REITER A J, KONG S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97. |
15 | MØRCH C S, BJERRE A, GØTTRUP M P, et al. Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system[J]. Fuel, 2011, 90(2): 854-864. |
16 | 王月姑, 吴崇君, 郑淞生, 等. 氨燃料缓解能源安全及替代天然气的可行性分析[J]. 可再生能源, 2019, 37(7): 949-954. |
WANG Y G, WU C J, ZHENG S S, et al. Feasibility analysis of ammonia energy to relieve energy security and replace natural gas[J]. Renewable Energy Resources, 2019, 37(7): 949-954. | |
17 | 安恩科, 杨霞, 宋尧. 氨作为富氢载体和燃料的应用[J]. 能源技术, 2008, 29(4): 209-211, 239. |
AN E K, YANG X, SONG Y. The application of ammonia as hydrogen carrier and fuel[J]. Energy Technology, 2008, 29(4): 209-211, 239. | |
18 | AFIF A, RADENAHMAD N, CHEOK Q, et al. Ammonia-fed fuel cells: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 822-835. |
19 | 钟绍华, 万桂芹, 严利群. 氨燃料燃烧性能数值模拟与分析[J]. 内燃机工程, 2014, 35(3): 46-51. |
ZHONG S H, WAN G Q, YAN L Q. Numerical simulation and analysis of ammonia fuel combustion characteristics[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(3): 46-51. | |
20 | 刘伟, 王琮, 郭娅, 等. 氨燃料在船舶行业应用及标准需求研究[J]. 中国标准化, 2021(18): 39-43. |
LIU W, WANG C, GUO Y, et al. Research on the application of ammonia fuel and standard development requirements in the shipbuilding industry[J]. China Standardization, 2021(18): 39-43. | |
21 | 王思佳. 零碳航运——氨燃料大有作为[J]. 中国船检, 2021(8): 80-84. |
22 | JO Y S, CHA J, LEE C H, et al. A viable membrane reactor option for sustainable hydrogen production from ammonia[J]. Journal of Power Sources, 2018, 400: 518-526. |
23 | CHA J, JO Y S, JEONG H, et al. Ammonia as an efficient COX-free hydrogen carrier: Fundamentals and feasibility analyses for fuel cell applications[J]. Applied Energy, 2018, 224: 194-204. |
24 | 王源慧. 直接氨燃料电池中的阳极催化剂的研究[D]. 武汉: 中国地质大学, 2021. |
WANG Y H. The study of anode catalysts for direct ammonia fuel cell[D]. Wuhan: China University of Geosciences, 2021. | |
25 | WANG Y H, GU Y C, ZHANG H, et al. Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells[J]. Applied Energy, 2020, 270: doi: 10.1016/j.apenergy.2020.115185. |
26 | WANG Y H, YANG Z H, YANG J, et al. Towards continuous ammonia electro-oxidation reaction on Pt catalysts with weakened adsorption of atomic nitrogen[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21816-21824. |
27 | SIDDIQUI O, DINCER I. A review and comparative assessment of direct ammonia fuel cells[J]. Thermal Science and Engineering Progress, 2018, 5: 568-578. |
28 | MENG G Y, JIANG C R, MA J J, et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen[J]. Journal of Power Sources, 2007, 173(1): 189-193. |
29 | NI M, LEUNG M K H, LEUNG D Y C. Ammonia-fed solid oxide fuel cells for power generation—A review[J]. International Journal of Energy Research, 2009, 33(11): 943-959. |
30 | VAYENAS C G, FARR R D. Cogeneration of electric energy and nitric oxide[J]. Science, 1980, 208(4444): 593-594. |
31 | WOJCIK A, MIDDLETON H, DAMOPOULOS I, et al. Ammonia as a fuel in solid oxide fuel cells[J]. Journal of Power Sources, 2003, 118(1/2): 342-348. |
32 | WANG Y H, YANG J, WANG J X, et al. Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab7b5b. |
33 | KISHIMOTO M, FURUKAWA N, KUME T, et al. Formulation of ammonia decomposition rate in Ni-YSZ anode of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2370-2380. |
34 | YANG J, MOLOUK A F S, OKANISHI T, et al. A stability study of Ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28701-28707. |
35 | SHY S S, HSIEH S C, CHANG H Y. A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements[J]. Journal of Power Sources, 2018, 396: 80-87. |
36 | MIYAZAKI K, MUROYAMA H, MATSUI T, et al. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells[J]. Sustainable Energy & Fuels, 2020, 4(10): 5238-5246. |
37 | AOKI Y, YAMAGUCHI T, KOBAYASHI S, et al. High-efficiency direct ammonia fuel cells based on BaZr0.1Ce0.7Y0.2O3- δ/Pd oxide-metal junctions[J]. Global Challenges, 2017, 2(1): doi: 10.1002/gch2.201700088. |
38 | ZHANG L M, YANG W S. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte[J]. Journal of Power Sources, 2008, 179(1): 92-95. |
39 | NI M, LEUNG D Y C, LEUNG M K H. Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte[J]. Journal of Power Sources, 2008, 183(2): 682-686. |
40 | CHELLAPPA A S, FISCHER C M, THOMSON W J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications[J]. Applied Catalysis A: General, 2002, 227(1/2): 231-240. |
41 | URIBE F A, GOTTESFELD S, ZAWODZINSKI T A. Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance[J]. Journal of the Electrochemical Society, 2002, 149(3): doi: 10.1149/1.1447221. |
42 | ZHANG X Y, PASAOGULLARI U, MOLTER T. Influence of ammonia on membrane-electrode assemblies in polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(22): 9188-9194. |
43 | HALSEID R, VIE P J S, TUNOLD R. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2006, 154(2): 343-350. |
44 | 郭朋彦, 聂鑫鑫, 张瑞珠, 等. 氨燃料电池的研究现状及发展趋势[J]. 电源技术, 2019, 43(7): 1233-1236. |
GUO P Y, NIE X X, ZHANG R Z, et al. Research status and development trend of ammonia fuel cells[J]. Chinese Journal of Power Sources, 2019, 43(7): 1233-1236. | |
45 | HEJZE T, BESENHARD J O, KORDESCH K, et al. Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier[J]. Journal of Power Sources, 2008, 176(2): 490-493. |
46 | COX B, TREYER K. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications[J]. Journal of Power Sources, 2015, 275: 322-335. |
[1] | 董乐贤, 郑群, 黄悦, 田志鹏, 刘建平, 王超, 梁波, 雷励斌. 管状固体氧化物燃料电池前沿技术研究进展[J]. 储能科学与技术, 2023, 12(1): 131-138. |
[2] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[3] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性实验[J]. 储能科学与技术, 2022, 11(5): 1314-1321. |
[4] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[5] | 谢林翰, 李万忠, 张倩倩, 曹高萍, 邱景义, 明海, 封伟. 植物发供电技术的研究进展[J]. 储能科学与技术, 2022, 11(2): 442-466. |
[6] | 熊亚林, 刘玮, 高鹏博, 董斌琦, 赵铭生. “双碳”目标下氢能在我国合成氨行业的需求与减碳路径[J]. 储能科学与技术, 2022, 11(12): 4048-4058. |
[7] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性的数值研究[J]. 储能科学与技术, 2022, 11(1): 291-296. |
[8] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[9] | 李萍萍, 陈姗姗, 赵璐璐, 史明亮, 黄岩, 李初福. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. |
[10] | 李志浩, 彭浩, 陈亚琴. 质子交换膜燃料电池膜电极组件温度分布的神经网络预测模型[J]. 储能科学与技术, 2021, 10(6): 2053-2059. |
[11] | 韩婷婷, 吴玉玺, 解子恒, 孟秀霞, 张津津, 解玉姣, 于方永, 杨乃涛. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. |
[12] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[13] | 刘偲艳, 胡毕华. 氢燃料汽车双向DC-DC变换器改进模型预测控制[J]. 储能科学与技术, 2021, 10(6): 2046-2052. |
[14] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[15] | 吴玉玺, 韩婷婷, 解子恒, 李琳, 宋艳雯, 梁加仓, 张津津, 于方永, 杨乃涛. 直接碳固体氧化物燃料电池研究进展:碳燃料和逆向Boudouard反应催化剂[J]. 储能科学与技术, 2021, 10(6): 1977-1986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||