储能科学与技术 ›› 2023, Vol. 12 ›› Issue (1): 86-110.doi: 10.19799/j.cnki.2095-4239.2022.0413
收稿日期:
2022-07-25
修回日期:
2022-09-15
出版日期:
2023-01-05
发布日期:
2023-02-08
通讯作者:
徐友龙
E-mail:zhangkai808@stu.xjtu.edu.cn;ylxu@mail.xjtu.edu.cn
作者简介:
张凯(1999—),男,硕士研究生,主要研究方向为钠离子电池正极材料,E-mail:zhangkai808@stu.xjtu.edu.cn;
基金资助:
Received:
2022-07-25
Revised:
2022-09-15
Online:
2023-01-05
Published:
2023-02-08
Contact:
Youlong XU
E-mail:zhangkai808@stu.xjtu.edu.cn;ylxu@mail.xjtu.edu.cn
摘要:
近年来,钠离子电池凭借钠资源储量丰富、分布广泛、价格低廉、绿色可持续发展、安全稳定、集成效率高、快速充电性能优异、低温性能好等一系列优势被认为是锂离子电池当前最好且最有发展前景的互补品,也是未来发展大规模电化学储能最具前景的系统之一。然而阻碍钠离子电池发展的因素是正极材料体系结构易发生相变、放电比容量不够高、循环性能不够好等问题。目前,钠离子电池正极材料的研究中过渡金属氧化物材料表现出更多样的结构种类、更优的结构稳定性、更高的比容量、良好的充放电循环性能和其他优异的电化学性能。本文针对锰酸钠正极材料微观以及宏观结构的研究进展进行归纳总结,着重对不同钠含量的锰酸钠材料通过三种不同位点(钠位、锰位和氧位)掺杂以及包覆的手段进行系统深入的研究,详细展示并论述了不同元素不同位点掺杂以及不同包覆手段所带来的增益效果。在未来的发展过程中,应加强对微观宏观结构的进一步提升,拓展多元素多位点掺杂种类、掺杂比例、搭配类型和包覆材料种类等,提升包覆技术,并不断加强钠离子电池电解液、负极材料等配件的创新与发展。
中图分类号:
张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110.
Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 86-110.
表3
Na x MnO2(x ≤0.5)及元素掺杂正极材料的制备方法和电化学性能"
正极材料 | 合成方法 | 电压范围/V | 比容量/(mAh/g) | 容量保持率(th表示圈数) |
---|---|---|---|---|
Na0.44MnO2(微棒)[ | 固相法 | 2.0~4.5 | 100.3(1 C) 90.9(包覆后1 C) 63.6(10 C) | 70.2%(1 C,400th) 86.7%(包覆后1 C, 400th) |
Na0.44MnO2(纳米线)[ | 电纺法退火处理 | 2.0~4.0 | 120.4(0.1 C) 85.8(5 C) | 89%(5 C,3300th) |
Na0.44MnO1.93F0.07[ | 固相法 | 2.0~4.2 | 149(0.5 C) 138(1 C) 109(5 C) | 79%(5 C,400th) |
Na0.46Mn0.93Al0.07O1.79F0.21[ | 固相法 | 1.8~4.0 | 164.3(0.3 C) | 89.1%(5 C,500th) |
Na0.5Ni0.25Mn0.75O2[ | 溶胶-凝胶法 | 1.5~4.4 | 210(0.1 C) | 80%(0.1 C,50th) |
Na0.44Mn0.95Mg0.05O2[ | 固相法 | 2.0~3.8 | 105(0.2 C) | 67%(2 C,800th) 70%(20 C,800th) |
表5
Na x (Mn y M1 j )O2(x>0.5)正极材料的制备方法和电化学性能"
锰位掺杂正极材料 | 合成方法 | 电压范围/V | 比容量/(mAh/g) | 容量保持率 |
---|---|---|---|---|
Na0.67Ni0.15Mn0.85O2[ | 固相法和共沉淀法 | 2.0~4.3 | 101 | 96.8%(120th) |
Na2/3Ni1/3Mn2/3O2[ | 共沉淀法和喷雾干燥法 | 1.5~4.5① 2.0~4.0② | 228(①,0.05 C) 89(②,0.05 C) | 56%(0.5 C,100th) 97%(0.5 C,100th) |
Na x [Fe y Mn1-y ]O2[ | 固相法 | 1.5~3.8 | 155 | |
Na2/3[Mg0.28Mn0.72]O2[ | 固相法 | 1.5~4.4 | >200(10 mA/g) | >75%(30th) |
Na0.67Mg0.34Mn0.66O2[ | 固相法 | 1.5~4.5 | 205(0.1 C) | 70%(0.5 C,50th) |
Na0.67Co0.5Mn0.5O2[ | 溶胶-凝胶法 | 1.5~4.3 | 147(0.1 C) | 100%(1 C,100th) ≈50%(2000th) |
NaNi0.5Mn0.5O2[ | 溶胶-凝胶法 | 2.0~4.0 | 141 | 90%(100th) |
Na2/3Ni1/3Mn2/3O2[ | 固相法和液相法 | 2.5~4.3 | 162(0.1 C)、 143(0.2 C)、 121(0.5 C)、 113(1 C)、 102(2 C) | 75%(0.5 C,200th) |
Na2/3[Ni1/3Mn2/3]O2[ | 喷雾干燥法和两步固相法 | 2.0~4.0① 1.6~3.8② | 86(0.1 C,①) 77(1 C,①) 135(0.1 C,②) 108(1 C,②) | 92%(0.1 C, 100th) 91%(1 C, 100th) |
Na0.67Mn0.8Mg0.2O2[ | 固相法 | 1.5~4.2 | ≈150 | >96%(25th) |
Na0.7[Mn1-x Li x ]O2+y (x=0.07)[ | 固相法 | 2.0~3.8 | ≈183 | |
Na0.6Mn0.93Ru0.07O2[ | 固相法 | 1.5~4.5 | 206.3(0.5 C) 183.3(1 C) 163.2(2 C) 136.2(5 C) 121.1(10 C) 108.7(20 C) 97.3(50 C) | 87.4%(2 C,50th) |
Na2/3Fe1/2Mn1/2O2[ | 共沉淀法 | 2.0~4.0 | 126(0.1 C) | 84.7%(25th) |
Na2.4Al0.4Mn2.6O7[ | 固相法 | 1.5~4.7 | 200(0.05 C) | 90%(40th) |
Na0.67Mn0.5Fe0.5O2[ | 溶胶-凝胶法 | 1.5~4.2 | 200 | 80%(0.1 C,50th) |
Na2/3Mn0.75Co0.25O2[ | 固相法 | 1.8~4.0 | 164.1(0.1 C) 111.4(1 C) 85.7(5 C) 68.6(10 C) | 85.6%(0.1 C,100th) 72.3%(1 C,400th) 73.5%(5 C,1000th) 82.0%(10 C,1000th) |
NaLi0.2Mn0.8O2[ | 固相法 | 1.5~4.0 | 160(0.1 C) 115(1 C) | 93%(0.1 C,50th) |
Na2/3B0.11Mn0.89O2[ | 固相法 | 2.0~4.0 | 165(40 mA/g) | 82%(200th) |
Na2/3Fe1/3Mn2/3O2[ | 固相法 | 1.5~4.3 | 193(0.05 C) | 79.3%(40th) |
Na0.6Li0.2Mn0.8O2[ | 固相法和液相法 | 2.0~4.6 | 190(12 mA/g) | |
NaxMg0.11Mn0.89O2[ | 共沉淀法和固相法 | 1.5~4.4 | 174(1th) 129(10th) | 93.8%(100th,对比10th) 75%(200th,对比10th) |
表6
Na x (Mn y M2 j )O2(x>0.5)正极材料的制备方法和电化学性能"
锰位掺杂正极材料 | 合成方法 | 电压范围/V | 比容量/(mAh/g) | 容量保持率 |
---|---|---|---|---|
NaNi1/3Co1/3Mn1/3O2[ | 溶胶-凝胶法 | 2.0~3.75 | 120 | ≈100%(50th) |
Na0.66Ni0.26Zn0.07Mn0.67O2[ | 固相法 | 2.2~4.25 | 132(12 mA/g) | 89%(30th) |
Na7/9Cu2/9Fe1/9Mn2/3O2[ | 固相法 | 1.0~4.2 | 313(0.2 C,搭配硬碳负极), 能量密度195 Wh/kg | 85%(1 C,150th) |
Na0.9Ni0.45Mn x Ti0.55-x O2(0≤x≤0.55)[ | 固相法 | 1.5~4.5,中值电压3.27 | 197,能量密度643 Wh/kg | 81%(15th) |
Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2[ | 超声波喷雾 热解法和固相法 | 1.4~4.2 | 180(0.1 C) | 86%(200th) |
Na0.59Co0.20Mn0.77Mo0.03O2[ | 固相法 | 2.0~4.0 | 131.9(0.1 C) | 91.51%(100th) |
Na0.75Ni1/3Ru1/6Mn1/2O2[ | 固相法 | 1.5~4.0 | 161.5(0.2 C) 119.5(10 C) | 79.5%(10 C,500th) |
Na1-y (Ni1/3Fe1/3Mn1/3)O2(0≤y≤0.46)[ | 固相法 | 1.5~4.0 | 130(0.5 C) | 76%(150th) |
NaNi1/4Fe1/2Mn1/4O2[ | 固相法 | 2.1~3.9 | 140(0.1 C) | 82.2%(100th) 76.1%(150th) |
Na0.67Mn0.65Fe0.2Ni0.15O2[ | 溶胶-凝胶法 | 1.5~4.3 | 208(0.05 C) | 71%(50th) |
Na[Ni0.60Co0.05Mn0.35]O2[ | 共沉淀法和 固相法 | 1.5~3.9 | 143(30 ℃,0.1 C) 147.6(55 ℃,0.1 C) 128.8(0 ℃,0.1 C) 114(-20 ℃,0.1 C) | 83%(55 ℃,0.1 C,100th) 89%(0 ℃,0.1 C,100th) 92%(-20 ℃,0.1 C,100th) |
Na0.6Mn0.65Ni0.25Co0.10O2[ | 共沉淀法 | 2.1~4.3 | 148(0.2 C) | 43.2%(150th) |
Na0.67[Ni0.4Co0.2Mn0.4]O2[ | 固相法 | 1.5~4.2① 1.5~4.4② | 138① 164② | 88.4%(①,100th) 70.7%(②,100th) |
Na0.67(Fe0.5Mn0.5)1-x Co x O2(x=0,0.2,0.4,0.5)[ | 固相法和 共沉淀法 | 1.5~4.2 | 136.7(0.2 C) 81.1(5 C) | 85.5%(1 C,100th) |
Na0.67Co0.25Mn0.705V0.045O2@ NaV6O15[ | 固相法 | 2.0~4.0 | 122.84(20 mA/g) | 88.35%(100th) |
Na2/3Li1/9Ni2/9Mn2/3O2[ | 溶胶-凝胶法和 高温退火 | 2.5~4.2,中值电压3.3 | 97.6(0.2 C) 70(5 C ) | 78.7%(2 C,300th) |
Na0.67Mn0.7Fe0.2Co0.1O2[ | 溶胶-凝胶法 | 1.5~4.2 | 171(0.05 C) 162(0.1 C) 145(0.2 C) 140(0.5 C) 123(1 C) 104(2 C) 75(5 C) 58(8 C) 45(10 C) | 89%(0.1 C,50th) |
Na1.0Li0.2Mn0.7Ti0.1O2[ | 固相法 | 1.5~4.0 | 163(0.1 C) | 97%(50th) |
Na0.8Mn0.6Co0.4-x Mg x O2(x=0,0.1,0.2)[ | 固相法 | 1.5~4.5 | 170(0.1 C) 130.1(0.5 C) 114.3(1 C) | 58.5%(x=2,0.1 C,120th) 82.5(x=2,1 C,120th) |
Na0.67Ni0.28Mg0.05Mn0.67O2@ NaTi2(PO4)3 [ | 溶胶-凝胶法 | 2.5~4.3 | 130.4(0.1 C) 124.6(1 C) 106.8(5 C) | 77.4%(1 C,200th) |
Na0.67Ni0.167Co0.167Mn0.67O2[ | 共沉淀法 | 2.0~4.3 | 132(0.1 C) | 87%(100th) |
Na2/3Mn0.8Fe0.1Ti0.2O2[ | 固相法 | 2.0~4.0 | 144(0.1 C) | 95.09%(0.1 C,50th) 87.7%(1 C,300th) |
Na0.67Mn0.65Ni0.2Co0.15O2[ | 溶胶-凝胶法 | 1.5~4.2 | 155(12 mA/h) | 85%(100th) |
Na0.67[Mn0.61Ni0.28Sb0.11]O2[ | 溶胶-凝胶法 | 1.8~4.2 | 145(0.1 C) | 86%(200th) |
Na0.67Ni0.33Mn0.66Sn0.01O2[ | 固相法 | 1.5~4.5 | 245(0.1 C) | 73%(50th) |
Na0.8Li0.33Mn0.57Ti0.1O2[ | 溶胶-凝胶法 | 1.5~4.3 | 194 | 62.3%(100th) |
表7
Na x (Mn y Mmj )O2(x>0.5)正极材料的制备方法和电化学性能"
锰位掺杂正极材料 | 合成方法 | 电压范围/V | 比容量/(mAh/g) | 容量保持率 |
---|---|---|---|---|
Na[Li0.05Mn0.50Ni0.30Cu0.10Mg0.05]O2[ | 共沉淀法 | 2.0~4.0 | 172(0.1 C,能量密度215 Wh/kg) | 70.4%(20 C,1000th) |
Na0.66Li0.18Mn0.71Mg0.21Co0.08O2[ | 溶热法和固相法 | 1.5~4.5 | 166(20 mA/g) | 82%(100th) |
Na2/3Mn1/2Fe1/4Co1/8Ni1/8O2[ | 固相法 | 2.0~4.2,中值电压3.3 | 121.7(130 mA/g),能量密度328.6 Wh/kg | 87.4%(100th) |
Na0.6Li0.07Mn0.66Co0.17Ni0.17O2[ | 水热法和固相法 | 1.5~4.2 | 87(5 C) | 81%(100th) |
Na[Ni0.4Fe0.2Mn0.2Ti0.2]O2[ | 热聚合法 | 2.0~4.2 | 145(0.1 C) | 84%(200th) |
Na0.7Ni0.3Mn0.59Co0.1Cu0.01O2[ | 溶胶-凝胶法 | 1.5~4.0 | 150(0.1 C) | 94%(80th) |
Na0.8Li0.1Mn0.6Ni0.2Cu0.1O2[ | 共沉淀法 | 1.8~4.0 | 135.1(0.1 C) | 81.7%(400th) |
Na0.66Li0.18Mn0.71Ni0.21Co0.08O2+δ[ | 共沉淀法和固相法 | 1.5~4.5 | 200(0.1 C,能量密度640 Wh/kg)134(1 C) | 84%(0.2 C,50th) |
Na(Mn0.25Fe0.25Co0.25Ni0.25)O2[ | 固相法 | 1.9~4.3 | 180(0.1 C),能量密度578 Wh/kg | ≈86%(20th) |
NaLi0.07Ni0.26Mn0.4Co0.26O2[ | 共沉淀法 | 1.5~4.5 | 147(25 mA/g) 110(125 mA/g) | 87.1%(25mA/g,50th) 98%(125mA/g,50th) |
NaTi0.03(Ni0.6Co0.2Mn0.2)0.97O2[ | 共沉淀法 | 1.5~4.1 | 154(0.1 C) | 77%(400th) |
NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2[ | 固相法 | 1.4~4.5 | 180(0.1 C) | |
Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2[ | 固相法 | 2.2~4.1,中值电压3.57 | 134(0.1 C) 110(4 C) | 82%(2 C,200th) |
表8
(Na x A i )(Mn y M j )O2(x>0.5)正极材料的制备方法和电化学性能"
钠位掺杂正极材料 | 合成方法 | 电压范围/V | 比容量/(mAh/g) | 容量保持率 |
---|---|---|---|---|
Na0.7Mg0.05[Mn0.6Ni0.2Mg0.15]O2[ | 固相法 | 1.5~4.2 | 130(0.1 C) | 73%(180th) |
Na2/3Li1/9[Ni2/9Li1/9Mn2/3]O2[ | 固相法 | 2.0~4.2 | 64(20 C,是0.1 C时容量的58.2%) | 74.5%(1500th) |
Na0.76Ca0.05[Ni0.23□0.08Mn0.69]O2[ | 溶胶-凝胶法 | 2.0~4.3 | 153.9(0.1 C) | |
Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2[ | 共沉淀法 | 1.0~4.2 | 238(1th) 200(2th) | 85%(40th) |
Na0.98Ca0.01[Ni0.5Mn0.5]O2[ | 共沉淀法 | 2.0~4.3 | 209(15 mA/g) | 75%(100th) |
表9
Na x (Mn y M j ) (O2-k nM k )(x>0.5)正极材料的制备方法和电化学性能"
氧位掺杂正极材料 | 合成方法 | 电压范围/V | 比容量/(mAh/g) | 容量保持率 |
---|---|---|---|---|
Na0.6Mn0.95Ni0.05O1.95F0.05[ | 共沉淀法 | 2.5~3.9 | 80.76(2 C) | 75.0%(2 C,960th) |
Na2/3Ni1/3Mn2/3O2-x F x (x=0,0.03,0.05,0.07)[ | 固相法 | 2.0~4.0 | 106.7(0.1 C) 104.5(0.2 C) 101.7(0.5 C) 99.1(1 C) 96(2 C) 90.9(5 C) 86.4(10 C) | 70.6%(10 C,30 ℃,2000th) 75.6%(10 C,55 ℃,2000th) |
Na0.67Ni0.33Mn0.37Ti0.3O1.9F0.1[ | 固相法 | 2.0~4.4 | 87.7(6 C) 82.7(2C,-10 ℃) 128.1(2C,50 ℃) | 77.2%(2 C,300th) 94.2%(2 C,-10 ℃,200th) |
Na0.67Ni0.15Fe0.2Mn0.65F0.05O1.95[ | 共沉淀法 | 1.5~4.3 | 229 100(10 C) | 87.7%(10 C,50th) |
P2-Na0.6Mn0.7Ni0.3O2-x F x (x=0,0.03,0.05和0.07)[ | 固相法 | 1.5~3.8 | 90.5(1.0 A/g) | 78%(900th) |
1 | 腾讯新闻. 60GW!中信建设发布欧洲光伏组件出货强预期[EB/OL]. [2022-04-20]. https://new.qq.com/rain/a/20220420A0BIEJ00.html. |
2 | BP中国. BP世界能源统计年鉴2021版[EB/OL].[2021-07-08]. https://www.bp.com/zh_cn/china/home/news/reports/statistical-review-2021.html. |
3 | 刘英军, 刘亚奇, 张华良, 等. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463-1473. |
LIU Y J, LIU Y Q, ZHANG H L, et al. Energy storage policy analysis and suggestions in China[J]. Energy Storage Science and Technology, 2021, 10(4): 1463-1473. | |
4 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. | |
5 | BP中国.BP世界能源统计年鉴[EB/OL].[2019-07-30].https://www.bp.com/zh_cn/china/home/news/reports/statistical-review-2019.html. |
BP China. BP world energy statistical yearbook [EB/OL]. [2019-07-30]. https://www.bp.com/zh_cn/china/home/news/reports/statistical-review-2019.html. | |
6 | 袁亚琼, 司华清. 储能技术的发展前景与作用路线[J]. 技术与市场, 2019, 26(2): 77-78, 81. |
YUAN Y Q, SI H Q. The development prospect and action route of energy storage technology[J]. Technology and Market, 2019, 26(2): 77-78, 81. | |
7 | 李泓, 吕迎春. 电化学储能基本问题综述[J]. 电化学, 2015, 21(5): 412-424. |
LI H, LYU Y C. A review on electrochemical energy storage[J]. Journal of Electrochemistry, 2015, 21(5): 412-424. | |
8 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
9 | 钟财富, 刘坚, 吕斌, 等. 我国新能源汽车产业锂资源需求分析及政策建议[J]. 中国能源, 2018, 40(10): 12-15, 24. |
ZHONG C F, LIU J, LYU B, et al. Demand analysis and policy suggestions for lithium resources in China's new energy automobile industry[J]. Energy of China, 2018, 40(10): 12-15, 24. | |
10 | ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): doi: 10.1039/c1ee01782a. |
11 | CHEN M Z, LIU Q N, WANG S W, et al. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies[J]. Advanced Energy Materials, 2019, 9(14): doi: 10.1002/aenm.201803609. |
12 | DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): doi: 10.1002/aenm.201701428. |
13 | BOMMIER C, JI X L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes[J]. Small, 2018, 14(16): doi: 10.1002/smll.201703576. |
14 | PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): doi: 10.1039/c3ee40847g. |
15 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
16 | CHEN L, FIORE M, WANG J E, et al. Readiness level of sodium-ion battery technology: A materials review[J]. Advanced Sustainable Systems, 2018, 2(3): doi: 10.1002/adsu.201700153. |
17 | SKUNDIN A M, KULOVA T L, YAROSLAVTSEV A B. Sodium-ion batteries (a review)[J]. Russian Journal of Electrochemistry, 2018, 54(2): 113-152. |
18 | LIANG Y R, LAI W H, MIAO Z C, et al. Nanocomposite materials for the sodium-ion battery: A review[J]. Small, 2018, 14(5): doi: 10.1002/smll.201702514. |
19 | KUBOTA K, DAHBI M, HOSAKA T, et al. Towards K-ion and Na-ion batteries as“beyond Li-ion”[J]. The Chemical Record, 2018, 18(4): 459-479. |
20 | 王勇, 刘雯, 郭瑞, 等. 钠离子电池正极材料研究进展[J]. 化工进展, 2018, 37(8): 3056-3066. |
WANG Y, LIU W, GUO R, et al. Recent development of cathode materials for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3056-3066. | |
21 | HAN D W, KU J H, KIM R H, et al. Aluminum manganese oxides with mixed crystal structure: High-energy-density cathodes for rechargeable sodium batteries[J]. ChemSusChem, 2014, 7(7): 1870-1875. |
22 | 张玉婷, 徐天野, 王振华, 等. 钠离子电池关键电极材料研究进展[J]. 电子元件与材料, 2020, 39(11): 21-32. |
ZHANG Y T, XU T Y, WANG Z H, et al. Recent advances of electrode materials for sodium ion battery[J]. Electronic Components and Materials, 2020, 39(11): 21-32. | |
23 | WHITACRE J F, TEVAR A, SHARMA S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J]. Electrochemistry Communications, 2010, 12(3): 463-466. |
24 | ZHANG Y, LIU L, JAMIL S, et al. Al2O3 coated Na0.44MnO2 as high-voltage cathode for sodium ion batteries[J]. Applied Surface Science, 2019, 494: 1156-1165. |
25 | LIU Y C, LIU X B, BU F, et al. Boosting fast and durable sodium-ion storage by tailoring well-shaped Na0.44MnO2 nanowires cathode[J]. Electrochimica Acta, 2019, 313: 122-130. |
26 | DELMAS C. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1/2/3/4): 81-85. |
27 | MA X H, CHEN H L, CEDER G. Electrochemical properties of monoclinic NaMnO2[J]. Journal of the Electrochemical Society, 2011, 158(12): doi: 10.1149/2.035112jes. |
28 | SATHIYA M, HEMALATHA K, RAMESHA K, et al. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials, 2012, 24(10): 1846-1853. |
29 | YUAN D D, HE W, PEI F, et al. Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(12): doi: 10.1039/c3ta01430d. |
30 | WANG Y, HU G R, PENG Z D, et al. Influence of Li substitution on the structure and electrochemical performance of P2-type Na0.67Ni0.2Fe0.15Mn0.65O2 cathode materials for sodium ion batteries[J]. Journal of Power Sources, 2018, 396: 639-647. |
31 | LU D, YAO Z J, ZHONG Y, et al. Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15630-15637. |
32 | LU D, YAO Z J, LI Y Q, et al. Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries[J]. Journal of Colloid and Interface Science, 2020, 565: 218-226. |
33 | PENG B, SUN Z H, JIAO S H, et al. Electrochemical performance optimization of layered P2-type Na0.67MnO2 through simultaneous Mn-site doping and nanostructure engineering[J]. Batteries & Supercaps, 2020, 3(2): 147-154. |
34 | ADAMCZYK E, PRALONG V. Na2Mn3O7: A suitable electrode material for Na-ion batteries?[J]. Chemistry of Materials, 2017, 29(11): 4645-4648. |
35 | SHI W J, YAN Y W, CHI C, et al. Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries[J]. Journal of Power Sources, 2019, 427: 129-137. |
36 | CHAE M S, KIM H J, LYOO J, et al. Anomalous sodium storage behavior in Al/F dual-doped P2-type sodium manganese oxide cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(43): doi: 10.1002/aenm.202002205. |
37 | MANIKANDAN P, RAMASUBRAMONIAN D, SHAIJUMON M M. Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries[J]. Electrochimica Acta, 2016, 206: 199-206. |
38 | LI X L, BAO J, LI Y F, et al. Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution[J]. Advanced Science, 2021, 8(9): doi: 10.1002/advs.202004448. |
39 | WANG C C, LIU L J, ZHAO S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-22523-3. |
40 | RISTHAUS T, ZHOU D, CAO X, et al. A high-capacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity[J]. Journal of Power Sources, 2018, 395: 16-24. |
41 | MORTEMARD DE BOISSE B, CARLIER D, GUIGNARD M, et al. Structural and electrochemical characterizations of P2 and new O3-NaxMn1- yFeyO2Phases prepared by auto-combustion synthesis for Na-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(4): doi: 10.1149/2.032304jes. |
42 | THACKERAY M M, JOHNSON C S, AMINE K, et al. Lithium metal oxide electrodes for lithium cells and batteries: US6680143[P]. 2004-01-20. |
43 | YABUUCHI N, HARA R, KUBOTA K, et al. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity[J]. J Mater Chem A, 2014, 2(40): doi: 10.1039/c4ta04351k. |
44 | 郝一帆. 钠离子电池正极材料Na0.67MnO2的掺杂改性[D]. 呼和浩特: 内蒙古大学, 2021. |
HAO Y F. Doping modification of Na0.67MnO2 cathode material for sodium-ion batteries[D]. Hohhot: Inner Mongolia University, 2021. | |
45 | ZHU Y E, QI X G, CHEN X Q, et al. A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(28): doi: 10.1039/c6ta02845d. |
46 | WANG P F, YOU Y, YIN Y X, et al. An O3-type NaNi0.5Mn0.5O2cathode for sodium-ion batteries with improved rate performance and cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(45): doi: 10.1039/c6ta07589d. |
47 | YANG Y, DANG R, WU K, et al. Semiconductor material ZnO-coated P2-type Na2/3Ni1/3Mn2/3O2 cathode materials for sodium-ion batteries with superior electrochemical performance[J]. The Journal of Physical Chemistry C, 2019, 124(3): doi: 10.1021/acs.jpcc.9b08220. |
48 | WANG H, YANG B J, LIAO X Z, et al. Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges[J]. Electrochimica Acta, 2013, 113: 200-204. |
49 | BILLAUD J, SINGH G, ARMSTRONG A R, et al. Na0.67Mn1- xMgxO2 (0≤x≤0.2): A high capacity cathode for sodium-ion batteries[J]. Energy Environ Sci, 2014, 7(4): 1387-1391. |
50 | KWON M S, LIM S G, PARK Y, et al. P2 orthorhombic Na0.7[Mn1- xLix]o2+ y as cathode materials for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(17): doi: 10.1021/acsami.7b00058. |
51 | JIANG K Z, ZHANG X P, LI H Y, et al. Suppressed the high-voltage phase transition of P2-type oxide cathode for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(16): doi: 10.1021/acsami.9b03326. |
52 | QIN M L, YIN C Y, XU W, et al. Facile synthesis of high capacity P2-type Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 2074-2080. |
53 | SOARES C, SILVÁN B, CHOI Y S, et al. Na2.4Al0.4Mn2.6O7 anionic redox cathode material for sodium-ion batteries-a combined experimental and theoretical approach to elucidate its charge storage mechanism[J]. Journal of Materials Chemistry A, 2022, 10(13): 7341-7356. |
54 | KONG W J, YANG W Y, DE NING, et al. Tuning anionic/cationic redox chemistry in a P2-type Na0.67Mn0.5Fe0.5O2 cathode material via a synergic strategy[J]. Science China Materials, 2020, 63(9): 1703-1718. |
55 | WANG L J, ZHANG X, YANG X H, et al. Co3O4-modified P2-Na2/3Mn0.75Co0.25O2 cathode for Na-ion batteries with high capacity and excellent cyclability[J]. Journal of Alloys and Compounds, 2020, 832: doi: 10.1016/j.jallcom.2020.154960. |
56 | QUYEN N Q, NGUYEN T V, THANG H H, et al. Carbon coated NaLi0.2Mn0.8O2 as a superb cathode material for sodium ion batteries[J]. Journal of Alloys and Compounds, 2021, 866: doi: 10.1016/j.jallcom.2021.158950. |
57 | VAALMA C, BUCHHOLZ D, PASSERINI S. Beneficial effect of boron in layered sodium-ion cathode materials-The example of Na2/3B0.11Mn0.89O2[J]. Journal of Power Sources, 2017, 364: 33-40. |
58 | ZHAO J, XU J, LEE D H, et al. Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries[J]. Journal of Power Sources, 2014, 264: 235-239. |
59 | DE LA LLAVE E, TALAIE E, LEVI E, et al. Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution[J]. Chemistry of Materials, 2016, 28(24): 9064-9076. |
60 | BUCHHOLZ D, VAALMA C, CHAGAS L G, et al. Mg-doping for improved long-term cyclability of layered Na-ion cathode materials-The example of P2-type NaxMg0.11Mn0.89O2[J]. Journal of Power Sources, 2015, 282: 581-585. |
61 | WU X H, GUO J H, WANG D W, et al. P2-type Na0.66Ni0.33- xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries[J]. Journal of Power Sources, 2015, 281: 18-26. |
62 | LI Y M, YANG Z Z, XU S Y, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2(6): doi: 10.1002/advs.201500031. |
63 | ZHENG L T, OBROVAC M N. Investigation of O3-type Na0.9Ni0.45MnxTi0.55- xO2 (0≤x≤0.55) as positive electrode materials for sodium-ion batteries[J]. Electrochimica Acta, 2017, 233: 284-291. |
64 | PARK Y J, CHOI J U, JO J H, et al. A new strategy to build a high-performance P'2-type cathode material through titanium doping for sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(28): doi: 10.1002/adfm.201901912. |
65 | ZHAO J B, ZHANG X, WANG J L, et al. P2-type Na0.59Co0.20Mn0.77Mo0.03O2 cathode with excellent cycle stability for sodium-ion batteries[J]. Journal of Solid State Electrochemistry, 2020, 24(6): 1349-1361. |
66 | WANG Q, JIANG K Z, FENG Y Z, et al. P2-type layered Na0.75Ni1/3Ru1/6Mn1/2O2 cathode material with excellent rate performance for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(35): doi: 10.1021/acsami.0c09082. |
67 | KIM D, LEE E, SLATER M, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochemistry Communications, 2012, 18: 66-69. |
68 | OH S M, MYUNG S T, YOOM C S, et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage[J]. Nano letters, 2014, 14(3): 1620-1626. |
69 | YUAN D D, HU X H, QIAN J F, et al. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery[J]. Electrochimica Acta, 2014, 116: 300-305. |
70 | HWANG J Y, OH S M, MYUNG S T, et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries[J]. Nature Communications, 2015, 6: 6865. |
71 | NGUYEN N A, KIM K, CHOI K H, et al. Effect of calcination temperature on a P-type Na0.6Mn0.65Ni0.25Co0.10O2Cathode material for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(1): doi: 10.1149/2.0511701jes. |
72 | SUN X, JI X Y, XU H Y, et al. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties[J]. Electrochimica Acta, 2016, 208: 142-147. |
73 | ZHOU D M, HUANG W X, ZHAO F L. P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries[J]. Solid State Ionics, 2018, 322: 18-23. |
74 | TANG J T, WANG Y Z, WANG L J, et al. Excellent cycle stability of P2Na0.67Co0.25Mn0.705V0.045O2@ NaV6O15 composite cathode for sodium ion battery[J]. Materials Chemistry and Physics, 2019, 224: 1-9. |
75 | LI S, XIAO Y, ZHU Y F, et al. A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery[J]. Chemical Engineering Journal, 2021, 412: doi: 10.1016/j.cej.2021.128719. |
76 | KONG W J, WANG H B, ZHAI Y W, et al. Enhancing the rate capability and cycling stability of Na0.67Mn0.7Fe0.2Co0.1O2 through a synergy of Zr4+ doping and ZrO2 coating[J]. The Journal of Physical Chemistry C, 2018, 122(45): 25909-25916. |
77 | TO N V, NGUYEN K V, NGUYEN H S, et al. P2-type layered structure Na1.0Li0.2Mn0.7Ti0.1O2 as a superb electrochemical performance cathode material for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 880: doi: 10.1016/j.jelechem. 2020.114834. |
78 | LI X L, BAO J, SHADIKE Z, et al. Stabilizing transition metal vacancy induced oxygen redox by Co2+/Co3+ redox and sodium-site doping for layered cathode materials[J]. Angewandte Chemie International Edition, 2021, 60(40): doi: 10.1002/anie.202108933. |
79 | TANG K, HUANG Y, XIE X, et al. The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 384: doi: 10.1016/j.cej.2019.123234. |
80 | BAO S, LUO S H, WANG Z Y, et al. Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries[J]. Journal of Power Sources, 2018, 396: 404-411. |
81 | HAN M H, GONZALO E, SHARMA N, et al. High-performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries[J]. Chemistry of Materials, 2016, 28(1): 106-116. |
82 | LI Z Y, GAO R, SUN L M, et al. Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(31): doi: 10.1039/c5ta02450a. |
83 | WANG Q C, SHADIKE Z, LI X L, et al. Tuning sodium occupancy sites in P2-layered cathode material for enhancing electrochemical performance[J]. Advanced Energy Materials, 2021, 11(13): doi: 10.1002/aenm.202003455. |
84 | LI J K, RISTHAUS T, WANG J, et al. The effect of Sn substitution on the structure and oxygen activity of Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227554. |
85 | MA X H, LI L L, CHENG L, et al. P2-type Na0.8(Li0.33Mn0.67- xTix)O2 doped by Ti as cathode materials for high performance sodium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 815: doi: 10.1016/j.jallcom.2019.152402. |
86 | DENG J Q, LUO W B, LU X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode[J]. Advanced Energy Materials, 2018, 8(5): doi: 10.1016/j.jallcom.2019.152402. |
87 | XIAO J, ZHANG F, TANG K K, et al. Rational design of a P2-type spherical layered oxide cathode for high-performance sodium-ion batteries[J]. ACS Central Science, 2019, 5(12): 1937-1945. |
88 | CHU S Y, CHEN Y B, WANG J, et al. A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 775: 383-392. |
89 | QIU J X, CHEN B R, HOU H Y, et al. Improving na+ diffusion and performance of P2-type layered Na0.6Li0.07Mn0.66Co0.17Ni0.17O2 by expanding the interplanar spacing[J]. ACS Applied Materials & Interfaces, 2020, 12(43): doi: 10.1021/acsami.0c14931. |
90 | SUN X, JIN Y, ZHANG C Y, et al. Na[Ni0.4Fe0.2Mn0.4– xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries[J]. J Mater Chem A, 2014, 2(41): doi: 10.1039/c4ta03828b. |
91 | TIWARI B, BHATTACHARYA I. Layered P2-type novel Na0.7Ni0.3Mn0.59Co0.1Cu0.01O2 cathode material for high-capacity & stable rechargeable sodium ion battery[J]. Electrochimica Acta, 2018, 270: 363-368. |
92 | CHEN T, GUO J, ZHUO Y, et al. An inactive metal supported oxide cathode material with high rate capability for sodium ion batteries[J]. Energy Storage Materials, 2019, 20: 263-268. |
93 | GUO S H, LIU P, YU H J, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(20): 5894-5899. |
94 | LI X, WU D, ZHOU Y N, et al. O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries[J]. Electrochemistry Communications, 2014, 49: 51-54. |
95 | XU J, LIU H D, MENG Y S, et al. Exploring Li substituted O3- structured layered oxides NaLixNi1/3- xMn1/3+ xCo1/3- xO2 (x = 0.07, 0.13, and 0.2) as promising cathode materials for rechargeable Na batteries[J]. Electrochemistry Communications, 2015, 60: 13-16. |
96 | YU T Y, HWANG J Y, BAE I T, et al. High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1- x]O2 cathodes for practical sodium-ion batteries[J]. Journal of Power Sources, 2019, 422: 1-8. |
97 | WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide-experimental and theoretical evidence of high electrochemical performance in sodium batteries[J]. Energy Storage Materials, 2022, 47: 500-514. |
98 | CHENG Z W, ZHAO B, GUO Y J, et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103461. |
99 | WANG Q C, MENG J K, YUE X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(2): 840-848. |
100 | LI Z Y, MA X B, SUN K, et al. Na2/3Li1/9[Ni2/9Li1/9Mn2/3]O2: A high-performance solid-solution reaction layered oxide cathode material for sodium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(1): 1126-1135. |
101 | SHEN Q Y, LIU Y C, ZHAO X D, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry[J]. Advanced Functional Materials, 2021, 31(51): doi: 10.1002/adfm.202106923. |
102 | KATAOKA R, MUKAI T, YOSHIZAWA A, et al. Development of high capacity cathode material for sodium ion batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2[J]. Journal of the Electrochemical Society, 2013, 160(6): doi: 10.1149/2.125306jes. |
103 | YU T Y, KIM J, HWANG J Y, et al. High-energy O3-Na1–2 xCax[Ni0.5Mn0.5]O2 cathodes for long-life sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(27): doi: 10.1039/d0ta04847j. |
104 | CHEN H, WU Z G, ZHONG Y J, et al. Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2- xFx cathode[J]. Electrochimica Acta, 2019, 308: 64-73. |
105 | LIU K, TAN S S, MOON J, et al. Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(19): doi: 10.1002/aenm.202000135. |
106 | ZHOU P F, ZHANG J, CHE Z N, et al. Insights into the enhanced structure stability and electrochemical performance of Ti4+/F- co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage[J]. Journal of Energy Chemistry, 2022, 67: 655-662. |
107 | CUI X L, WANG S M, YE X S, et al. Insights into the improved cycle and rate performance by ex-situ F and in situ Mg dual doping of layered oxide cathodes for sodium-ion batteries[J]. Energy Storage Materials, 2022, 45: 1153-1164. |
108 | KANG W P, MA P, LIU Z N, et al. Tunable electrochemical activity of P2-Na0.6Mn0.7Ni0.3O2- xFx microspheres as high-rate cathodes for high-performance sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(13): doi: 10.1021/acsami.1c02216. |
109 | LIU W, REN Q C, YANG M, et al. Na0.44MnO2 coated with In2O3 as a high-voltage cathode for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 896: doi: 10.1016/j.jallcom.2021.163087. |
[1] | 俎梦杨, 张梦, 李子坤, 黄令. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
[2] | 王绍聪, 李伟, 黄瑞琴, 郭艺飞, 刘峥. 锰基钠离子电池正极材料Jahn-Teller效应抑制方法进展[J]. 储能科学与技术, 2023, 12(1): 139-149. |
[3] | 田孟羽, 武怿达, 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.10.01—2022.11.30)[J]. 储能科学与技术, 2023, 12(1): 1-15. |
[4] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[5] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[6] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[7] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[8] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[9] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[10] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[11] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[15] | 武怿达, 张义, 詹元杰, 郭亚奇, 张辽, 刘兴江, 俞海龙, 赵文武, 黄学杰. 氧化硼修饰的钴酸锂材料及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1687-1692. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||