1 |
WEITEMEYER S, KLEINHANS D, VOGT T, et al. Integration of Renewable Energy Sources in future power systems: The role of storage[J]. Renewable Energy, 2015, 75: 14-20.
|
2 |
ZHU J, CHEN X Y, THANG A Q, et al. Vanadium-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage[J]. SmartMat, 2022, 3(3): 384-416.
|
3 |
SONG M, TAN H, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): doi: 10.1002/adfm.201802564.
|
4 |
PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.132.
|
5 |
MA B B, CHEN S J, HUANG Y W, et al. Electrochemical lithium storage performance of three-dimensional foam-like biocarbon/MoS2 composites[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(1): 255-264.
|
6 |
田孟羽, 朱璟, 岑官骏, 等. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312.
|
|
TIAN M Y, ZHU J, CEN G J, et al. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021)[J]. Energy Storage Science and Technology, 2022, 11(1): 297-312.
|
7 |
WAN F, HUANG S, CAO H M, et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries[J]. ACS Nano, 2020, 14(6): 6752-6760.
|
8 |
LIU Y K, LI J, SHEN Q Y, et al. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials[J]. eScience, 2022, 2(1): 10-31.
|
9 |
DAS S K, MAHAPATRA S, LAHAN H. Aluminium-ion batteries: Developments and challenges[J]. Journal of Materials Chemistry A, 2017, 5(14): 6347-6367.
|
10 |
ZHANG T S, CHEN Q R, LI X R, et al. Redox mediator chemistry regulated aqueous batteries: Insights into mechanisms and prospects[J]. CCS Chemistry, 2022, 4(9): 2874-2887.
|
11 |
李金杰. 高性能铝离子电池电极材料的研究[D]. 桂林: 桂林电子科技大学, 2021.
|
|
LI J J. Research on high performance aluminum ion batteries electrode materials[D]. Guilin: Guilin University of Electronic Technology, 2021.
|
12 |
MA D W, YUAN D, PONCE DE LEÓN C, et al. Current progress and future perspectives of electrolytes for rechargeable aluminum-ion batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12301.
|
13 |
LU H Y, LI Y, ZHENG Y, et al. Layered double hydroxide-derived Fe-doped NiSe cathode toward stable and high-energy aluminum storage[J]. Materials Today Energy, 2022, 24: doi: 10.1016/j.mtener.2021.100940.
|
14 |
ELIA G A, MARQUARDT K, HOEPPNER K, et al. An overview and future perspectives of aluminum batteries[J]. Advanced Materials, 2016, 28(35): 7564-7579.
|
15 |
HOLLECK G L, GINER J. The aluminum electrode in AlCl3-alkali-halide melts[J]. Journal of the Electrochemical Society, 1972, 119(9): doi: 10.1149/1.2404433.
|
16 |
HOLLECK G L. The reduction of chlorine on carbon in AlCl3-KCl-NaCl melts[J]. Journal of the Electrochemical Society, 1972, 119(9): doi: 10.1149/1.2404432.
|
17 |
FOULETIER M, ARMAND M. Electrochemical method for characterization of graphite-aluminium chloride intercalation compounds[J]. Carbon, 1979, 17(5): 427-429.
|
18 |
GIFFORD P R, PALMISANO J B. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte[J]. Journal of the Electrochemical Society, 1988, 135(3): 650-654.
|
19 |
JAYAPRAKASH N, DAS S K, ARCHER L A. The rechargeable aluminum-ion battery[J]. Chemical Communications, 2011, 47(47): doi: 10.1039/c1cc15779e.
|
20 |
WU Y P, GONG M, LIN M C, et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery[J]. Advanced Materials, 2016, 28(41): 9218-9222.
|
21 |
YU X, WANG B, GONG D, et al. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(4): doi: 10.1002/adma.201604118.
|
22 |
ZHANG E J, WANG B, WANG J, et al. Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries[J]. Chemical Engineering Journal, 2020, 389: doi: 10.1016/j.cej.2020.124407.
|
23 |
ZHANG E J, WANG J, WANG B, et al. Unzipped carbon nanotubes for aluminum battery[J]. Energy Storage Materials, 2019, 23: 72-78.
|
24 |
JIAO S Q, LEI H P, TU J G, et al. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene[J]. Carbon, 2016, 109: 276-281.
|
25 |
SUN H B, WANG W, YU Z J, et al. A new aluminium-ion battery with high voltage, high safety and low cost[J]. Chemical Communications (Cambridge, England), 2015, 51(59): 11892-11895.
|
26 |
LIN M C, GONG M, LU B G, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 324-328.
|
27 |
WANG S T, KRAVCHYK K V, KRUMEICH F, et al. Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28478-28485.
|
28 |
WISSLER M. Graphite and carbon powders for electrochemical applications[J]. Journal of Power Sources, 2006, 156(2): 142-150.
|