储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3076-3089.doi: 10.19799/j.cnki.2095-4239.2022.0028
龙立芬1(), 张西华1(), 姚沛帆1, 李明杰2, 王景伟1
收稿日期:
2022-01-14
修回日期:
2022-01-25
出版日期:
2022-10-05
发布日期:
2022-10-10
通讯作者:
张西华
E-mail:longlifen@njust.edu.cn;zhangxh@sspu.edu.cn
作者简介:
龙立芬(1994—),女,硕士研究生,研究方向为废锂离子电池负极材料循环利用,E-mail:longlifen@njust.edu.cn;
基金资助:
Lifen LONG1(), Xihua ZHANG1(), Peifan YAO1, Mingjie LI2, Jingwei WANG1
Received:
2022-01-14
Revised:
2022-01-25
Online:
2022-10-05
Published:
2022-10-10
Contact:
Xihua ZHANG
E-mail:longlifen@njust.edu.cn;zhangxh@sspu.edu.cn
摘要:
电动汽车产业的快速发展对中国实现碳达峰、碳中和目标意义重大。动力电池作为电动汽车的动力来源与核心部件,其报废后的高效清洁利用处置是推动电动汽车行业可持续发展的关键。负极材料是决定动力电池电化学性能的关键因素之一,石墨因具有导电率高、可逆容量高和循环性能稳定等优点,成为当前主流商业化负极材料。相较于锂、镍和钴等高价值关键金属,石墨负极材料的回收尚未引起足够的重视,其产业化高效清洁利用技术尤为缺乏。本文在系统分析全球及我国石墨资源储量、产量和主要应用领域的基础上,综述了废锂离子电池石墨负极利用处置技术最新研究进展,着重剖析了物理和化学回收法的技术现状,并总结了再生石墨及其产品的二次利用途径。基于此,建议强化石墨负极材料高效清洁利用及无害化处置产业化技术研发,进一步拓展再生石墨及其产品的利用途径。
中图分类号:
龙立芬, 张西华, 姚沛帆, 李明杰, 王景伟. 废锂离子电池石墨负极材料利用处理技术研究进展[J]. 储能科学与技术, 2022, 11(10): 3076-3089.
Lifen LONG, Xihua ZHANG, Peifan YAO, Mingjie LI, Jingwei WANG. Research advances on the utilization and disposal of graphite anode materials from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(10): 3076-3089.
1 | PETERSON S B, APT J, WHITACRE J F. Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization[J]. Journal of Power Sources, 2010, 195(8): 2385-2392. |
2 | 陆浩, 刘柏男, 禇赓, 等. 锂离子电池负极材料产业化技术进展[J]. 储能科学与技术, 2016(2):109-119. |
LU H, LIU B N, ZHE G, et al. Technology review of anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2016(2):109-119. | |
3 | 高工锂电. 2021中国锂电材料产业大数据[EB/OL]. [2021-10-15]. https://www.gg-lb.com/art-43485.html |
GGII. Big data of China lithium electric materials industry in 2021 [EB/OL]. [2021-10-15]. https://www.gg-lb.com/art-43485.html | |
4 | Prime Minister's Office of Japan. Resource assurance strategy [EB/OL]. [2021-07-01]. https://www.kantei.go.jp/jp/singi/package/dai15/sankou01.pdf |
5 | European Commission. On the 2017 list of critical raw materials for the EU [EB/OL]. [2021-07-01]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52017DC0490 |
6 | United States Geological Survey (USGS). Interior releases 2018's final List of 35 minerals deemed critical to U.S. National Security and the Economy [EB/OL]. [2021-07-01]. https://www.usgs.gov/news/national-news-release/interior-releases-2018s-final-list-35-minerals-deemed-critical-us |
7 | Australian Government, Department of Industry, Innovation and Science, Australian Trade and Investment Commission. Australia's critical minerals strategy [EB/OL]. [2021-07-01]. https://minefreeglenaladale.org/wp-content/uploads/2021/04/australias-critical-minerals-strategy-2019.pdf. |
8 | 中国国家统计局.《战略性新兴产业分类(2018)》(国家统计局令第23号)[EB/OL]. [2021-07-01]. http://www.stats.gov.cn/tjgz/tzgb/201811/t20181126_1635848.html |
National Bureau of Statistics of China. Classification of strategic emerging industries (2018) (Order No. 23 of the National Bureau of Statistics)[EB/OL]. [2021-07-01]. http://www.stats.gov.cn/tjgz/tzgb/201811/t20181126_1635848.html | |
9 | International Energy Agency. Global EV outlook 2021 [EB/OL]. [2021-07-01]. https://www.iea.org/reports/global-ev-outlook-2021 |
10 | 高工锂电. GGII:2018年负极材料出货量19.2万吨[EB/OL]. [2021-07-01]. https://www.gg-lb.com/asdisp2-65b095fb-36293-.html |
GGII. GGII: 192,000 tons of anode materials were shipped in 2018 [EB/OL]. [2021-07-01]. https://www.gg-lb.com/asdisp2-65b095fb-36293-.html | |
11 | 高工锂电. GGII:2019年中国锂电负极材料出货26.5万吨 [EB/OL]. [2021-07-01]. https://www.gg-lb.com/art-40078.html |
GGII. GGII: Shipments of anode materials in 2019 were 265,000 tons[EB/OL]. [2021-07-01]. https://www.gg-lb.com/art-40078.html | |
12 | 国务院. 国务院关于印发《中国制造2025》的通知(国发〔2015〕28号)[EB/OL]. [2021-07-01].http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm |
State Council. Notice of the State Council on the issue of made in China 2025 (No.28 Document in 2015 of the State Council) [EB/OL]. [2021-07-01]. http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm | |
13 | 工业和信息化部, 国家发展改革委, 科技部. 三部委关于印发《汽车产业中长期发展规划》的通知(工信部联装〔2017〕53号)[EB/OL]. [2021-07-01]. http://www.miit.gov.cn/n1146285/n1146352/n3054355/n7697926/n7697940/c7717739/content.html |
Ministry of Industry and Information Technology, National Development and Reform Commission, Ministry of Science and Technology. Notice of the three ministries and commissions on the issuance of the mid and long-term development plan for the automobile industry (Joint Installation of Ministry of Industry and Information Technology (2017) No. 53) [EB/OL]. [2021-07-01]. http://www.miit.gov.cn/n1146285/n1146352/n3054355/n7697926/n7697940/c7717739/content.html | |
14 | 国务院办公厅. 国务院办公厅关于印发的通知《新能源汽车产业发展规划(2021—2035年)》(国办发〔2020〕39号)[EB/OL]. [2021-07-01]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm. |
General Office of the State Council. Circular of the General Office of the State Council on the development plan for new energy vehicle industry (2021-2035) (State Affairs and Development Administration (2020) No. 39) [EB/OL]. [2021-07-01]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm | |
15 | SWAIN B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
16 | ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
17 | WU F, XU S M, LI L Y, et al. Recovery of valuable metals from anode material of hydrogen-nickel battery[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(2): 468-473. |
18 | Syrah Resources. Syrah resources and graphite market [EB/OL]. [2021-07-01]. http://www.syrahresources.com.au/investors/downloads/560 |
19 | United States Geological Survey (USGS). Graphite statistics and information [EB/OL]. [2021-07-02]. https://www.usgs.gov/centers/nmic/graphite-statistics-and-information |
20 | 中华人民共和国自然资源部. 中国矿产资源报告[R/OL]. [2021-07-02]. http://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/201910/P020191022538918416752.pdf |
Ministry of Natural Resources, PRC. China mineral resources report [R/OL]. [2021-07-02]. http://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/201910/P020191022538918416752.pdf | |
21 | 中华人民共和国海关总署. 海关统计数据查询平台 [DB/OL]. [2021-07-01]. http://43.248.49.97/ |
General Administration of Customs of the People's Republic of China. Customs statistical data query platform[DB/OL]. [2021-07-01]. http://43.248.49.97/ | |
22 | 中华人民共和国自然资源部.世界矿产资源年评,2015[EB/OL]. [2021-07-01]. http://geoglobal.mnr.gov.cn/np/2018np_598/fjskc/201903/P020190322552632757788.pdf |
Ministry of Natural Resources of the People's Republic of China. Annual review of world mineral resources,2015[EB/OL]. [2021-07-01]. http://geoglobal.mnr.gov.cn/np/2018np_598/fjskc/201903/P020190322552632757788.pdf | |
23 | 罗立群, 谭旭升, 田金星. 石墨提纯工艺研究进展[J]. 化工进展, 2014, 33(8): 2110-2116. |
LUO L Q, TAN X S, TIAN J X. Research progress of graphite purification[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2110-2116. | |
24 | 中国地质调查局. 中国地质调查百项成果: 中国石墨资源调查报告[R/OL]. [2021-07-02]. http://www.cgs.gov.cn/ddztt/cgs100/bxcg/fwgj/201611/P020161128419087798555.pdf |
China Geological Survey. Hundred achievements of China geological survey: China graphite resources survey report[R/OL]. [2021-07-02]. http://www.cgs.gov.cn/ddztt/cgs100/bxcg/fwgj/201611/P020161128419087798555.pdf | |
25 | CHOUBEY P, CHUNG K, KIM M S, et al. Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs)[J]. Minerals Engineering, 2017, 110: 104-121. |
26 | NIE H H, XU L, SONG D W, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. |
27 | ZHANG T, HE Y Q, GE L H, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-771. |
28 | YU J D, HE Y Q, QU L L, et al. Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries[J]. Journal of Cleaner Production, 2020, 274: doi: 10.1016/j.jclepro.2020.123066. |
29 | YU J D, HE Y Q, GE Z Z, et al. A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation[J]. Separation and Purification Technology, 2018, 190: 45-52. |
30 | LIU J S, WANG H F, HU T T, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation[J]. Minerals Engineering, 2020, 148: doi: 10.1016/j.mineng.2020.106223. |
31 | WAKAMATSU T, NUMATA Y. Flotation of graphite[J]. Minerals Engineering, 1991, 4(7/8/9/10/11): 975-982. |
32 | HE Y Q, ZHANG T, WANG F F, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143: 319-325. |
33 | JIANG Y J, DENG Y C, BU W G. Pyrometallurgical extraction of valuable elements in Ni-metal hydride battery electrode materials[J]. Metallurgical and Materials Transactions B, 2015, 46(5): 2153-2157. |
34 | MAROUFI S, NEKOUEI R K, HOSSAIN R, et al. Recovery of rare earth (i.e., La, Ce, Nd, and Pr) oxides from end-of-life Ni-MH battery via thermal isolation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11811-11818. |
35 | HE S C, WILSON B P, LUNDSTRÖM M, et al. Clean and efficient recovery of spent LiCoO2 cathode material: Water-leaching characteristics and low-temperature ammonium sulfate calcination mechanisms[J]. Journal of Cleaner Production, 2020, 268: doi: 10.1016/j.jclepro.2020.122299. |
36 | DIVYA M L, NATARAJAN S, LEE Y S, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low-and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959. |
37 | YANG Y, SONG S L, LEI S Y, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management, 2019, 85: 529-537. |
38 | KIM T H, JEON E K, KO Y, et al. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast[J]. J Mater Chem A, 2014, 2(20): 7600-7605. |
39 | WANG F F, ZHANG T, HE Y Q, et al. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment[J]. Journal of Cleaner Production, 2018, 185: 646-652. |
40 | ROTHERMEL S, EVERTZ M, KASNATSCHEEW J, et al. Graphite recycling from spent lithium-ion batteries[J]. ChemSusChem, 2016, 9(24): 3473-3484. |
41 | GAO Y, WANG C Y, ZHANG J L, et al. Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing-leaching combined with high-temperature calcination[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9447-9455. |
42 | 贺理珀, 孙淑英, 于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化工学报, 2018, 69(1): 327-340. |
HE L P, SUN S Y, YU J G. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries[J]. CIESC Journal, 2018, 69(1): 327-340. | |
43 | NATARAJAN S, BORICHA A B, BAJAJ H C. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries[J]. Waste Management, 2018, 77: 455-465. |
44 | WANG H R, HUANG Y S, HUANG C F, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta, 2019, 313: 423-431. |
45 | SABISCH J E C, ANAPOLSKY A, LIU G, et al. Evaluation of using pre-lithiated graphite from recycled Li-ion batteries for new LiB anodes[J]. Resources, Conservation and Recycling, 2018, 129: 129-134. |
46 | NATARAJAN S, BAJAJ H C. Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4631-4643. |
47 | TANONG K, COUDERT L, MERCIER G, et al. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process[J]. Journal of Environmental Management, 2016, 181: 95-107. |
48 | MA X T, CHEN M Y, CHEN B, et al. High-performance graphite recovered from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19732-19738. |
49 | CAO N, ZHANG Y L, CHEN L L, et al. An innovative approach to recover anode from spent lithium-ion battery[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour.2020.229163. |
50 | ZHANG G W, HE Y Q, FENG Y, et al. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10896-10904. |
51 | ZHANG G W, HE Y Q, WANG H F, et al. Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2019, 231: 1418-1427. |
52 | ZHANG G W, HE Y Q, WANG H F, et al. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2205-2214. |
53 | ZHAN R T, YANG Z Z, BLOOM I, et al. Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 531-540. |
54 | ZHANG G W, DU Z X, HE Y Q, et al. A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries[J]. Sustainability, 2019, 11(8): 2363. |
55 | 王玥, 郑晓洪, 陶天一, 刘秀庆, 李丽, 孙峙. 废锂离子电池正极材料中锂元素选择性回收的研究进展[J/OL].化工进展, 2021. [2022-02-01]. doi: 10.16085/j.issn.1000-6613.2021-1904. |
WANG Y, ZHENG X H, TAO T Y, LIU X Q, LI L, SUN Z. Review on selective recovery of lithium from cathode materials of spent lithium-ion batteries[J/OL]. Chemical Industry and Engineering Progress, 2021. [2022-02-01]. doi: 10.16085/j.issn.1000-6613.2021-1904. | |
56 | MA Z, ZHUANG Y C, DENG Y M, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries[J]. Journal of Power Sources, 2018, 376: 91-99. |
57 | YI C X, YANG Y, ZHANG T, et al. A green and facile approach for regeneration of graphite from spent lithium ion battery[J]. Journal of Cleaner Production, 2020, 277: doi: 10.1016/j.jclepro.2020.123585. |
58 | ZHANG J, LI X L, SONG D W, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources, 2018, 390: 38-44. |
59 | LIU K, YANG S L, LUO L Q, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta, 2020, 356: doi: 10.1016/j.electacta.2020.136856. |
60 | RUAN D S, WANG F M, WU L, et al. A high-performance regenerated graphite extracted from discarded lithium-ion batteries[J]. New Journal of Chemistry, 2021, 45(3): 1535-1540. |
61 | XIAO J F, LI J, XU Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. Journal of Hazardous Materials, 2017, 338: 124-131. |
62 | HUANG Z, ZHU J, QIU R J, et al. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2019, 229: 1148-1157. |
63 | HAO J, MENG X Q, FANG S, et al. MnO2-functionalized amorphous carbon sorbents from spent lithium-ion batteries for highly efficient removal of cadmium from aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10210-10220. |
64 | ZHAO T, YAO Y, WANG M L, et al. Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25369-25376. |
65 | ZHANG Y, GUO X M, WU F, et al. Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: Turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21315-21325. |
66 | YU J D, LIN M S, TAN Q Y, et al. High-value utilization of graphite electrodes in spent lithium-ion batteries: From 3D waste graphite to 2D graphene oxide[J]. Journal of Hazardous Materials, 2021, 401: doi: 10.1016/j.jhazmat.2020.123715. |
67 | YE L, WANG C H, CAO L, et al. Effective regeneration of high-performance anode material recycled from the whole electrodes in spent lithium-ion batteries via a simplified approach[J]. Green Energy & Environment, 2021, 6(5): 725-733. |
68 | RIBEIRO J S, FREITAS M B J G, FREITAS J C C. Recycling of graphite and metals from spent Li-ion batteries aiming the production of graphene/CoO-based electrochemical sensors[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): doi: 10.1016/j.jece.2020.104689. |
69 | ZHAO L L, LIU X Y, WAN C Y, et al. Soluble graphene nanosheets from recycled graphite of spent lithium ion batteries[J]. Journal of Materials Engineering and Performance, 2018, 27(2): 875-880. |
70 | YANG L, YANG L, XU G R, et al. Separation and recovery of carbon powder in anodes from spent lithium-ion batteries to synthesize graphene[J]. Scientific Reports, 2019, 9: 9823. |
71 | CHEN X, ZHU Y, PENG W, LI Y, ZHANG G, ZHANG F, FAN X. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation[J]. J Mater Chem A, 2017, 5(12): 5880. |
[1] | 邓林旺, 冯天宇, 舒时伟, 张子峰, 郭彬. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
[2] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[3] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
[4] | 陈晓宇, 耿萌萌, 王乾坤, 沈佳妮, 贺益君, 马紫峰. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
[5] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[6] | 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
[7] | 李育磊, 刘玮, 董斌琦, 夏定国. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
[8] | 张越, 孔得朋, 平平. 液冷板抑制锂离子电池组热失控蔓延性能及优化设计[J]. 储能科学与技术, 2022, 11(8): 2432-2441. |
[9] | 徐成善, 鲁博瑞, 张梦启, 王淮斌, 金昌勇, 欧阳明高, 冯旭宁. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术, 2022, 11(8): 2418-2431. |
[10] | 韦荣阳, 毛阗, 高晗, 彭建仁, 杨健. 基于TWP-SVR的锂离子电池健康状态估计[J]. 储能科学与技术, 2022, 11(8): 2585-2599. |
[11] | 霍丽萍, 栾伟玲, 庄子贤. 锂离子电池储能安全技术的发展态势[J]. 储能科学与技术, 2022, 11(8): 2671-2680. |
[12] | 卓萍, 朱艳丽, 齐创, 王聪杰, 高飞. 锂离子电池组过充燃烧爆炸特性[J]. 储能科学与技术, 2022, 11(8): 2471-2479. |
[13] | 曹志成, 周开运, 朱家立, 刘高明, 严慜, 汤舜, 曹元成, 程时杰, 张炜鑫. 锂离子电池储能系统消防技术的中国专利分析[J]. 储能科学与技术, 2022, 11(8): 2664-2670. |
[14] | 马勇, 李晓涵, 孙磊, 郭东亮, 杨景刚, 刘建军, 肖鹏, 钱广俊. 基于三维电化学热耦合析锂模型的锂离子电池参数设计[J]. 储能科学与技术, 2022, 11(8): 2600-2611. |
[15] | 唐亮, 尹小波, 吴候福, 刘鹏杰, 王青松. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||