1 |
凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83.
|
|
LING W, LIU W, LI Y L, et al. Development strategy of hydrogen infrastructure industry in China[J]. Strategic Study of CAE, 2019, 21(3): 76-83.
|
2 |
AGENCY I E. Global hydrogen review 2021R]. 2021.
|
3 |
Hydrogen Council, McKinsey Company. Hydrogen insights report 2021[R]. Belgium: Hydrogen Council, McKinsey & Company, 2021.
|
4 |
KYRIAKOU V, GARAGOUNIS I, VOURROS A, et al. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1): 142-158.
|
5 |
International Renewable Energy Agency. Reaching zero with renewables: Eliminating CO2 emissions from industry and transport in line with the 1.5 oC climate goal[R]. Abu Dhabi: International Renewable Energy Agency, 2020.
|
6 |
International energy agency. Net Zero by 2050[R]. France: International Energy Agency, 2021.
|
7 |
AGENCY I E. Ammonia Technology Roadmap[R]. 2021.
|
8 |
新能源网.美国能源部支持新的绿色氨技术突破[EB/OL]. (2021-11-29) [2020-12-01]. http://www.china-nengyuan.com/news/164028.html.
|
9 |
AGENCY I E. Hydrogen in Latin America[R]. 2021.
|
10 |
International Energy Agency. Hydrogen in North-Western Europe[R]. 2021.
|
11 |
中国能源报.日本更新《2050碳中和绿色增长战略》[EB/OL]. (2020-12-25) [2021-08-07]. https://baijiahao.baidu.com/s?id=1707421638747517128&wfr=spider&for=pc.
|
|
China Energy News. Japan has issued《The strategy of low carbon development to 2050》[EB/OL]. (2020-12-25) [2021-08-07]. https://baijiahao.baidu.com/s?id=1707421638747517128&wfr=spider&for=pc.
|
12 |
中国化工报.气头氮肥、甲醇迎来新的发展机遇[EB/OL]. (2021-03-02) [2022-01-06]. http://www.ccin.com.cn/detail/efb2d8d400f023a9664b2285a8a480b4.
|
13 |
顾宗勤, 苏建英. 氮肥甲醇产业应勇担减碳重任[J]. 中国石油和化工产业观察, 2021(8): 30-31.
|
14 |
中化新网. 2020年氮肥行业合成氨产量、尿素产量、利润总额20强公布[EB/OL]. (2021-05-27) [2021-05-27]. http://www.ccin.com.cn/detail/445045b693b30e851cef9c5c2976393a.
|
15 |
能源转型委员会. 中国2050:一个全面实现现代化国家的零碳景图[R]. 北京: 能源转型委员会, 2021.
|
16 |
ARORA P, SHARMA I, HOADLEY A, et al. Remote, small-scale, 'greener' routes of ammonia production[J]. Journal of Cleaner Production, 2018, 199: 177-192.
|
17 |
中华人民共和国工业信息化部. 合成氨行业能效“领跑者”实践经验[EB/OL]. (2021-03-02) [2021-03-02]. https://www.miit.gov.cn/jgsj/jns/gzdt/art/2021/art_4fdc15363bc342a79f27c4a6227dde6d.html.
|
18 |
国家能源局新闻发言人. 国家能源局召开发布会介绍2021年一季度我国能源形势等有关情况并答问[EB/OL]. (2021-01-28) [2022-01-29] http://www.gov.cn/xinwen/2021-04/30/content_5604055.htm.
|
19 |
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14.
|
|
SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14.
|
20 |
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
|
|
SHU Y B, CHEN G P, HE J B, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69.
|
21 |
SALMON N, BAÑARES-ALCÁNTARA R, NAYAK-LUKE R. Optimization of green ammonia distribution systems for intercontinental energy transport[J]. iScience, 2021, 24(8): 102903.
|
22 |
HAO Derek, WEI Yunxia, MAO Liang, et al. Boosted selective catalytic nitrate reduction to ammonia on carbon/bismuth/bismuth oxide photocatalysts[J]. Journal of Cleaner Production, 2022, 331: 1-7.
|
23 |
ZHAO X, JIA X X, ZHANG H B, et al. Atom-dispersed copper and nano-palladium in the boron-carbon-nitrogen matric cooperate to realize the efficient purification of nitrate wastewater and the electrochemical synthesis of ammonia[J]. Journal of Hazardous Materials, 2022, 434: 128909.
|
24 |
LIU X L, SHEN Z R, PENG X Y, et al. A photo-assisted electrochemical-based demonstrator for green ammonia synthesis[J]. Journal of Energy Chemistry, 2022, 68: 826-834.
|
25 |
顾红宾. 《中国可再生能源发展报告2020》[R]. 苏州: 水电水利规划设计总院, 2021.
|
|
GU Hongbin. China renewable energy and development report 2020[R]. Suzhou: China Renewable Energy Engineering Institute, 2021.
|
26 |
WANG L, XIA M K, WANG H, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074.
|
27 |
刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展[J]. 化工学报, 2022(1): 32-45.
|
|
LIU H Y, WANG H H, XU J H. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen[J]. CIESC Journal, 2022(1): 32-45.
|
28 |
WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12(1): 2870.
|
29 |
LEE B, LIM D, LEE H, et al. Which water electrolysis technology is appropriate? : Critical insights of potential water electrolysis for green ammonia production[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110963.
|
30 |
QI M, KIM M, DAT VO N, et al. Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage[J]. Applied Energy, 2022, 314: 118965.
|
31 |
ARNAIZ DEL POZO C, CLOETE S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future[J]. Energy Conversion and Management, 2022, 255: 115312.
|
32 |
FASIHI M, WEISS R, SAVOLAINEN J, et al. Global potential of green ammonia based on hybrid PV-wind power plants[J]. Applied Energy, 2021, 294: 116170.
|
33 |
LUO Y, LIAO S T, CHEN S, et al. Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation[J]. Applied Energy, 2022, 307: 118158.
|
34 |
MAKHLOUFI C, KEZIBRI N. Large-scale decomposition of green ammonia for pure hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34777-34787.
|
35 |
国家发展改革委, 国家能源局. “十四五”现代能源体系规划[R/OL]. (2022-1-29) [2022-03-22].
|
36 |
国家能源局, 科学技术部. “十四五”能源领域科技创新规划[R/OL]. (2021-11-29) [2022-04-03] http://www.gov.cn/zhengce/zhengceku/2022-04/03/content_5683361.htm.
|
37 |
国家发展改革委, 国家能源局. “十四五”新型储能发展实施方案[R/OL]. (2022-2-10) [2022-03-21]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202203/t20220321_1319772.html?code=&state=123.
|
38 |
国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[R/OL]. (2022-3-23) [2022-03-23]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html?code=&state=123.
|