储能科学与技术 ›› 2020, Vol. 9 ›› Issue (1): 162-169.doi: 10.12028/j.issn.2095-4239.2019.0156

• 储能系统与工程 • 上一篇    下一篇

一种考虑可再生能源不确定性的分布式储能电站选址定容规划方法

丁倩1(), 曾平良1(), 孙轶恺2, 徐辰婧2, 徐振超2   

  1. 1. 杭州电子科技大学,浙江 杭州 310018
    2. 国网浙江省电力有限公司经济技术研究院,浙江 杭州 310020
  • 收稿日期:2019-07-09 修回日期:2019-07-26 出版日期:2020-01-05 发布日期:2019-08-20
  • 通讯作者: 曾平良 E-mail:qding_work@163.com;plzeng@hotmail.com
  • 作者简介:丁倩(1994—),女,硕士研究生,主要研究方向为考虑可再生能源不确定性的分布式储能电网规划,E-mail:qding_work@163.com

A planning method for the placement and sizing of distributed energy storage system considering the uncertainty of renewable energy sources

DING Qian1(), ZENG Pingliang1(), SUN Yikai2, XU Chenjing2, XU Zhenchao2   

  1. 1. Hangzhou Dianzi University,Hangzhou 310018,Zhejiang,China
    2. State Grid Zhejiang Economy Research Institute,Hangzhou 310020,Zhejiang,China
  • Received:2019-07-09 Revised:2019-07-26 Online:2020-01-05 Published:2019-08-20
  • Contact: Pingliang ZENG E-mail:qding_work@163.com;plzeng@hotmail.com

摘要:

储能具有响应快、灵活性强等特点,可为电网提供多种辅助服务,是消纳高比例可再生能源的重要灵活资源。随着储能成本的快速下降,集中式、分布式储能在电网中的应用近年来得到了国内外研究者的广泛关注。本工作提出了一种考虑可再生能源出力不确定性的分布式电化学储能选址定容双层优化模型。首先,建立计及可再生能源不确定性的电化学储能投资成本和运行成本最小的优化目标函数,其次,采用双层优化算法对储能选址和容量配置进行优化求解,外层采用分支界定法确定储能的选址位置,内层采用改进遗传算法得到最优容量配置与储能充放电运行策略,最后,以IEEE-39节点测试系统为例对所提方法进行仿真,验证了该方法的正确性和运算效率。

关键词: 可再生能源并网, 储能选址定容, 双层优化算法, 分布式储能

Abstract:

Energy storage is characterized by fast response and high flexibility and can provide several auxiliary services for a power grid, which is an important flexible resource that can absorb a considerable proportion of renewable energy. With the rapid decline in energy storage costs, the application of centralized and distributed energy storage in a power grid has recently become the focus of attention of international researchers. This study proposes a two-layer optimization model for the optimal placement and sizing of distributed electrochemical energy storage considering the uncertainty and intermittency associated with the renewable energy output. First, the study establishes an optimal objective function for electrochemical energy storage investment and operating costs considering the renewable energy uncertainty. Second, a two-layer optimization algorithm is applied to solve the sizing and placement of energy storage. The outer layer adopts the branch definition method to determine the energy storage location, whereas the inner layer uses the improved genetic algorithm to obtain the optimal capacity as well as the discharging/charging operation strategy of the storage system. Finally, the proposed method is applied using the IEEE-39 bus test system, and the validity and efficiency of the proposed method are verified.

Key words: renewable energy integration, optimal placement and sizing, two-layer optimization algorithm, distributed energy storage

中图分类号: