1 |
WANG Y S, SPERLING D, TAL G, et al. China's electric car surge[J]. Energy Policy, 2017, 102: 486-490.
|
2 |
付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
|
|
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136.
|
3 |
葛昊, 李哲, 张剑波. 锂离子电池开路电压曲线形状与多阶段容量损失[J]. 储能科学与技术, 2019, 8(6): 1089-1095.
|
|
GE H, LI Z, ZHANG J B. Multi-stage capacity loss of lithium-ion batteries originating from the multi-slope nature of open circuit voltage curves[J]. Energy Storage Science and Technology, 2019, 8(6): 1089-1095.
|
4 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[M]//Materials for Sustainable Energy. UK: Co-Published with Macmillan Publishers Ltd, 2010: 171-179.
|
5 |
MEENA N, BAHARWANI V, SHARMA D, et al. Charging and discharging characteristics of Lead acid and Li-ion batteries[C]// 2014 Power and energy systems: Towards sustainable energy. IEEE, 2014: 1-3.
|
6 |
CHEN L R, HSU R C, LIU C S. A design of a grey-predicted Li-ion battery charge system[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10): 3692-3701.
|
7 |
SIKHA G, RAMADASS P, HARAN B S, et al. Comparison of the capacity fade of Sony US 18650 cells charged with different protocols[J]. Journal of Power Sources, 2003, 122(1): 67-76.
|
8 |
WANG S C, LIU Y H. A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2983-2993.
|
9 |
LIU Y H, TENG J H, LIN Y C. Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1328-1336.
|
10 |
CHEN L R. A design of an optimal battery pulse charge system by frequency-varied technique[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 398-405.
|
11 |
CHEN L R. Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2): 480-487.
|
12 |
CHO S Y, LEE I O, BAEK J I, et al. Battery impedance analysis considering DC component in sinusoidal ripple-current charging[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1561-1573.
|
13 |
CHEN L R, WU S L, SHIEH D T, et al. Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 88-97.
|
14 |
NOTTEN P H L, VELD J H G O H, VAN BEEK J R G. Boostcharging Li-ion batteries: A challenging new charging concept[J]. Journal of Power Sources, 2005, 145(1): 89-94.
|
15 |
VO T T, CHEN X P, SHEN W X, et al. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation[J]. Journal of Power Sources, 2015, 273: 413-422.
|
16 |
LUO Y F, LIU Y H, WANG S C. Search for an optimal multistage charging pattern for lithium-ion batteries using the Taguchi approach[C]// TENCON 2009-2009 IEEE Region 10 Conference. IEEE, 2009: 1-5.
|
17 |
INOA E, WANG J. PHEV charging strategies for maximized energy saving[J]. IEEE Transactions on Vehicular Technology, 2011, 60(7): 2978-2986.
|
18 |
YE M, GONG H R, XIONG R, et al. Research on the battery charging strategy with charging and temperature rising control awareness[J]. IEEE Access, 2018, 6: 64193-64201.
|
19 |
CHU Z Y, FENG X N, LU L G, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017, 204: 1240-1250.
|
20 |
SUTHAR B, NORTHROP P W C, BRAATZ R D, et al. Optimal charging profiles with minimal intercalation-induced stresses for lithium-ion batteries using reformulated pseudo 2-dimensional models[J]. Journal of the Electrochemical Society, 2014, 161(11): F3144-F3155.
|
21 |
PEREZ H E, HU X S, DEY S, et al. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7761-7770.
|
22 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
23 |
HAN X B, OUYANG M G, LU L G, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle (I): Diffusion simplification and single particle model[J]. Journal of Power Sources, 2015, 278: 802-813.
|
24 |
PEREZ H E, DEY S, HU X, et al. Optimal charging of Li-ion batteries via a single particle model with electrolyte and thermal dynamics[J]. Journal of the Electrochemical Society, 2017, 164(7): A1679-A1687.
|
25 |
LIU Y H, HSIEH C H, LUO Y F. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays[J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 654-661.
|
26 |
LI J, MURPHY E, WINNICK J, et al. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries[J]. Journal of Power Sources, 2001, 102(1/2): 302-309.
|
27 |
PURUSHOTHAMAN B K, LANDAU U. Rapid charging of lithium-ion batteries using pulsed currents[J]. Journal of the Electrochemical Society, 2006, 153(3): A533.
|
28 |
ARYANFAR A, BROOKS D, MERINOV B V, et al. Dynamics of lithium dendrite growth and inhibition: Pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726.
|
29 |
BESSMAN A, SOARES R, VADIVELU S, et al. Challenging sinusoidal ripple-current charging of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4750-4757.
|
30 |
KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. Electrochemical model based observer design for a lithium-ion battery[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 289-301.
|
31 |
METHEKAR R, RAMADESIGAN V, BRAATZ R D, et al. Optimum charging profile for lithium-ion batteries to maximize energy storage and utilization[J]. ECS Transactions, 2010, 25(35): 139-146.
|
32 |
KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. State estimation of a reduced electrochemical model of a lithium-ion battery[C]// Proceedings of the 2010 American Control Conference. IEEE, 2010: 6618-6623.
|
33 |
SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019, 436: 226835.
|
34 |
YANG X G, LIU T, GAO Y, et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12): 3002-3019.
|
35 |
YANG X G, LIU T, WANG C Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles[J]. Nature Energy, 2021, 6(2): 176-185.
|
36 |
WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518.
|
37 |
YANG X G, ZHANG G S, GE S H, et al. Fast charging of lithium-ion batteries at all temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7266-7271.
|