储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2866-2878.doi: 10.19799/j.cnki.2095-4239.2022.0354
收稿日期:
2022-06-27
修回日期:
2022-07-15
出版日期:
2022-09-05
发布日期:
2022-08-30
通讯作者:
严川伟
E-mail:a.tang@imr.ac.cn;cwyan@imr.ac.cn
作者简介:
唐奡(1984—),男,研究员,主要研究方向为液流电池储能技术,E-mail:a.tang@imr.ac.cn;
基金资助:
Received:
2022-06-27
Revised:
2022-07-15
Online:
2022-09-05
Published:
2022-08-30
Contact:
Chuanwei YAN
E-mail:a.tang@imr.ac.cn;cwyan@imr.ac.cn
摘要:
液流电池作为一种典型长时储能电池,是可再生能源为主体的新型电力系统的重要组成部分。液流电池技术的不断发展对工程化电堆开发和系统设计提出了更高要求,相比于传统实验测试方法周期长成本高的特点,模拟仿真技术高效而便捷,近年来在液流电池高功率电堆和大容量储能系统设计方面起到了重要作用。本文将基于现有研究工作,重点围绕液流电池基础科学问题的模拟仿真、电堆数值模拟与动态仿真、储能系统模拟仿真与设计三个方面,对液流电池模拟仿真研究现状进行综述和分析,最后对未来液流电池模拟仿真技术的进一步发展提出了展望。
中图分类号:
唐奡, 严川伟. 液流电池模拟仿真研究现状与展望[J]. 储能科学与技术, 2022, 11(9): 2866-2878.
Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects[J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878.
1 | RYCHCIK M, SKYUAS-KAZACOS M. Characteristics of a new all-vanadium redox flow hattery[J]. Journal of Power Sources, 1988, 22(1): 59-67. |
2 | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022,11: doi:10.19799/j.cnki.2095-4239.2022.0246. |
ZHANG H M. The development, cost analysis with various duration and prospect of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11: doi:10.19799/j.cnki.2095-4239.2022.0246. | |
3 | 姚祯, 王锐, 阳雪, 等. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
YAO Z, WANG R, YANG X, et al. Current situations and prospects of zinc-iron flow battery[J]. Energy Storage Science and Technology, 2022, 11(1): 78-88. | |
4 | YUAN Z Z, YIN Y B, XIE C X, et al. Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019, 31: doi:10.1002/adma.201902025. |
5 | 郭定域, 蒋峰景, 张竹涵. 铁基氧化还原液流电池研究进展及展望[J]. 储能科学与技术, 2020, 9(6): 1668-1677. |
GUO D Y, JIANG F J, ZHANG Z H. Research progresses in iron-based redox flow batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677. | |
6 | 彭康, 刘俊敏, 唐珙根, 等. 水系有机液流电池电化学活性分子研究现状及展望[J]. 储能科学与技术, 2022, 11(4): 1246-1263. |
PENG K, LIU J M, TANG G G, et al. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. | |
7 | 严川伟. 大规模长时储能与全钒液流电池产业发展[J]. 太阳能, 2022(5): 14-22. |
YAN C W. Large energy storage and vanadium flow battery industrialization[J]. Solar Energy, 2022(5): 14-22. | |
8 | SHAH A A, WATT-SMITH M J, WALSH F C. A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008, 53(27): 8087-8100. |
9 | SHAH A A, AL-FETLAWI H, WALSH F C. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery[J]. Electrochimica Acta, 2010, 55(3): 1125-1139. |
10 | AL-FETLAWI H, SHAH A A, WALSH F C. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery[J]. Electrochimica Acta, 2010, 55(9): 3192-3205. |
11 | YOU D J, ZHANG H M, CHEN J. A simple model for the vanadium redox battery[J]. Electrochimica Acta, 2009, 54(27): 6827-6836. |
12 | YUE M, LV Z Q, ZHENG Q, et al. Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries[J]. Applied Energy, 2019, 235: 495-508. |
13 | LEI Y, ZHANG B W, BAI B F, et al. A transient electrochemical model incorporating the donnan effect for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2015, 299: 202-211. |
14 | TANG A, BAO J, SKYLLAS-KAZACOS M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. Journal of Power Sources, 2011, 196(24): 10737-10747. |
15 | XIONG B Y, ZHAO J Y, TSENG K J, et al. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2013, 242: 314-324. |
16 | WEI Z B, ZHAO J Y, SKYLLAS-KAZACOS M, et al. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery[J]. Journal of Power Sources, 2014, 260: 89-99. |
17 | BADRINARAYANAN R, ZHAO J Y, TSENG K J, et al. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer[J]. Journal of Power Sources, 2014, 270: 576-586. |
18 | MA X K, ZHANG H M, XING F. A three-dimensional model for negative half cell of the vanadium redox flow battery[J]. Electrochimica Acta, 2011, 58: 238-246. |
19 | ZHENG Q, XING F, LI X F, et al. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery[J]. Journal of Power Sources, 2016, 324: 402-411. |
20 | ZHANG B W, LEI Y, BAI B F, et al. A two-dimensional model for the design of flow fields in vanadium redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2019, 135: 460-469. |
21 | 王振宇, 郭子啸, 范新庄, 等. 全钒液流电池中蛇型和插指型流道的对比[J]. 储能科学与技术, 2022, 11(4): 1121-1130. |
WANG Z Y, GUO Z X, FAN X Z, et al. Comparative study between serpentine and interdigitated flow fields for vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1121-1130. | |
22 | GURIEFF N, CHEUNG C Y, TIMCHENKO V, et al. Performance enhancing stack geometry concepts for redox flow battery systems with flow through electrodes[J]. Journal of Energy Storage, 2019, 22: 219-227. |
23 | YIN C, GAO Y, XIE G Y, et al. Three dimensional multi-physical modeling study of interdigitated flow field in porous electrode for vanadium redox flow battery[J]. Journal of Power Sources, 2019, 438: doi:10.1016/j.jpowsour.2019.227023. |
24 | HAO H H, ZHANG Q, FENG Z Y, et al. Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.138170. |
25 | XIONG J, JING M H, TANG A, et al. Mechanical modelling and simulation analyses of stress distribution and material failure for vanadium redox flow battery[J]. Journal of Energy Storage, 2018, 15: 133-144. |
26 | XIONG J, WANG S L, LI X R, et al. Mechanical behavior and Weibull statistics based failure analysis of vanadium flow battery stacks[J]. Journal of Power Sources, 2019, 412: 272-281. |
27 | XIONG J, SONG Y X, WANG S L, et al. Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery[J]. Journal of Power Sources, 2019, 431: 170-181. |
28 | TANG A, MCCANN J, BAO J, et al. Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery[J]. Journal of Power Sources, 2013, 242: 349-356. |
29 | TANG A, BAO J, SKYLLAS-KAZACOS M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery[J]. Journal of Power Sources, 2014, 248: 154-162. |
30 | TANG A, TING S, BAO J, et al. Thermal modelling and simulation of the all-vanadium redox flow battery[J]. Journal of Power Sources, 2012, 203: 165-176. |
31 | TANG A, BAO J, SKYLLAS-KAZACOS M. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery[J]. Journal of Power Sources, 2012, 216: 489-501. |
32 | TANG A, SKYLLAS-KAZACOS M. Simulation analysis of regional temperature effects and battery management schedules for a residential-scale vanadium redox flow battery system[J]. ChemPlusChem, 2015, 80(2): 368-375. |
33 | WANDSCHNEIDER F T, RÖHM S, FISCHER P, et al. A multi-stack simulation of shunt currents in vanadium redox flow batteries[J]. Journal of Power Sources, 2014, 261: 64-74. |
34 | YE Q, HU J, CHENG P, et al. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery[J]. Journal of Power Sources, 2015, 296: 352-364. |
35 | GUARNIERI M, TROVÒ A, D'ANZI A, et al. Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments[J]. Applied Energy, 2018, 230: 1425-1434. |
36 | MORO F, TROVÒ A, BORTOLIN S, et al. An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment[J]. Journal of Power Sources, 2017, 340: 229-241. |
37 | CHEN H, LI X R, GAO H, et al. Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay[J]. Applied Energy, 2019, 247: 13-23. |
38 | CHEN H, WANG S L, GAO H, et al. Analysis and optimization of module layout for multi-stack vanadium flow battery module[J]. Journal of Power Sources, 2019, 427: 154-164. |
39 | CHEN F Y, GAO H, CHEN H, et al. Evaluation of thermal behaviors for the multi-stack vanadium flow battery module[J]. Journal of Energy Storage, 2020, 27: doi:10.1016/j.est.2019.101081. |
40 | CHEN H, CHENG M, FENG X, et al. Analysis and optimization for multi-stack vanadium flow battery module incorporating electrode permeability[J]. Journal of Power Sources, 2021, 515: doi:10. 1016/j.jpowsour.2021.230606. |
[1] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. |
[2] | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
[3] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[4] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[5] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[6] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[7] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
[8] | 吴小凌, 周涛, 刘钰照, 杜艳平, 陈会平, 李顺. 基于空气紊流的中空底孔微柱阵列设计及强化散热数值研究[J]. 储能科学与技术, 2022, 11(6): 1980-1987. |
[9] | 房茂霖, 张英, 乔琳, 刘淑敏, 曹中琦, 张华民, 马相坤. 铁铬液流电池技术的研究进展[J]. 储能科学与技术, 2022, 11(5): 1358-1367. |
[10] | 王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467. |
[11] | 彭康, 刘俊敏, 唐珙根, 杨正金, 徐铜文. 水系有机液流电池电化学活性分子研究现状及展望[J]. 储能科学与技术, 2022, 11(4): 1246-1263. |
[12] | 王振宇, 郭子啸, 范新庄, 赵天寿. 全钒液流电池中蛇型和插指型流道的对比[J]. 储能科学与技术, 2022, 11(4): 1121-1130. |
[13] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[14] | 李昂, 李晓蒙, 杨林, 王含, 项俊帆, 刘雨涵. 液流电池封装压力计算[J]. 储能科学与技术, 2022, 11(2): 609-614. |
[15] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||