储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2847-2865.doi: 10.19799/j.cnki.2095-4239.2022.0097
翟朋博1(), 常冬梅2, 毕志杰1, 赵宁1, 郭向欣1()
收稿日期:
2022-02-24
修回日期:
2022-04-12
出版日期:
2022-09-05
发布日期:
2022-08-30
通讯作者:
郭向欣
E-mail:woshizpb@qdu.edu.cn;xxguo@qdu.edu.cn
作者简介:
翟朋博(1993—),男,博士,副教授,主要研究方向高性能锂金属电池构筑,E-mail: woshizpb@qdu.edu.cn;
基金资助:
Pengbo ZHAI1(), Dongmei CHANG2, Zhijie BI1, Ning ZHAO1, Xiangxin GUO1()
Received:
2022-02-24
Revised:
2022-04-12
Online:
2022-09-05
Published:
2022-08-30
Contact:
Xiangxin GUO
E-mail:woshizpb@qdu.edu.cn;xxguo@qdu.edu.cn
摘要:
与目前采用有机电解液的商业化锂离子电池相比,引入固体电解质的固态锂电池在同时提升电池能量密度和安全性方面具有巨大潜力,成为开发下一代锂电池的重点。在众多固体电解质材料中,石榴石型的锂镧锆氧(Li7La3Zr2O12,LLZO)凭借高锂离子电导率、优异的对锂稳定性和宽电化学窗口等优点受到广泛关注。然而,LLZO的引入带来诸多界面之间的突出问题,例如固固界面的物理接触、应力应变、电荷重新排布以及电化学稳定性等。这些问题不仅是影响电池性能的关键因素,而且带来了很多新的物理化学现象需要深入研究。因此,本文从LLZO基固体电解质与电极之间的外部界面和固体电解质及复合电极内部界面两个角度入手,依据本课题组多年的研究积累,结合领域内最新研究动态,详细讨论了:①LLZO基固体电解质粉体材料表面碳酸锂(Li2CO3)的形成原因、对电化学性能的影响以及克服这一问题的手段;②LLZO基固体电解质层内部界面调控对锂离子电导率及电池电化学性能的影响;③LLZO/Li界面特性及Li在LLZO基陶瓷电解质中贯穿生长,深入探讨了诱导Li析出和生长的电场、电荷、应力应变等作用机制;④复合正极内部界面问题及其与电解质层外部接触界面的一体化构筑方法。希望通过本文对LLZO固态锂电池界面问题的关键科学和技术的分析总结,为构筑高导通高稳定界面,推动高性能固态锂电池发展提供思路。
中图分类号:
翟朋博, 常冬梅, 毕志杰, 赵宁, 郭向欣. 锂镧锆氧(LLZO)基固态锂电池界面关键问题研究进展[J]. 储能科学与技术, 2022, 11(9): 2847-2865.
Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state[J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865.
1 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
2 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
3 | GOODENOUGH J B. Rechargeable batteries: Challenges old and new[J]. Journal of Solid State Electrochemistry, 2012, 16(6): 2019-2029. |
4 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
5 | LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
6 | LIN D C, LIU Y Y, PEI A, et al. Nanoscale perspective: Materials designs and understandings in lithium metal anodes[J]. Nano Research, 2017, 10(12): 4003-4026. |
7 | 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193. |
8 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
9 | YANG C P, FU K, ZHANG Y, et al. Protected lithium-metal anodes in batteries: From liquid to solid[J]. Advanced Materials, 2017, 29(36): 1701169. |
10 | XIN S, YOU Y, WANG S F, et al. Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects[J]. ACS Energy Letters, 2017, 2(6): 1385-1394. |
11 | JIA M Y, ZHAO N, HUO H Y, et al. Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries[J]. Electrochemical Energy Reviews, 2020, 3(4): 656-689. |
12 | HUANG W L, BI Z J, ZHAO N, et al. Chemical interface engineering of solid garnet batteries for long-life and high-rate performance[J]. Chemical Engineering Journal, 2021, 424: 130423. |
13 | MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781. |
14 | KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. Journal of Power Sources, 2008, 182(2): 621-625. |
15 | ZHANG Z X, ZHANG L, LIU Y Y, et al. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries[J]. Journal of Alloys and Compounds, 2018, 747: 227-235. |
16 | ANANTHARAMULU N, KOTESWARA RAO K, RAMBABU G, et al. A wide-ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46(9): 2821-2837. |
17 | MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921. |
18 | SENEVIRATHNE K, DAY C S, GROSS M D, et al. A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure[J]. Solid State Ionics, 2013, 233: 95-101. |
19 | ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190-1199. |
20 | WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300. |
21 | GUO S J, SUN Y G, CAO A M. Garnet-type solid-state electrolyte Li7La3Zr2O12: Crystal structure, element doping and interface strategies for solid-state lithium batteries[J]. Chemical Research in Chinese Universities, 2020, 36(3): 329-342. |
22 | FERRARESI G, EL KAZZI M, CZORNOMAZ L, et al. Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode[J]. ACS Energy Letters, 2018, 3(4): 1006-1012. |
23 | PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051-8059. |
24 | CHENG L, CRUMLIN E J, CHEN W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(34): 18294-18300. |
25 | MA C, RANGASAMY E, LIANG C D, et al. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions[J]. Angewandte Chemie International Edition, 2015, 54(1): 129-133. |
26 | HUO H Y, CHEN Y, ZHAO N, et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125. |
27 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1: 16042. |
28 | VARDAR G, BOWMAN W J, LU Q, et al. Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode [J]. Chemistry of Materials, 2018, 30(18): 6259-6276. |
29 | HAN X G, GONG Y H, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
30 | LIU Q, GENG Z, HAN C P, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries[J]. Journal of Power Sources, 2018, 389: 120-134. |
31 | NOLAN A M, WACHSMAN E D, MO Y F. Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 41: 571-580. |
32 | KRAUSKOPF T, DIPPEL R, HARTMANN H, et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes[J]. Joule, 2019, 3(8): 2030-2049. |
33 | MU S, HUANG W L, SUN W H, et al. Heterogeneous electrolyte membranes enabling double-side stable interfaces for solid lithium batteries[J]. Journal of Energy Chemistry, 2021, 60: 162-168. |
34 | CAO Y, LI Y Q, GUO X X. Densification and lithium ion conductivity of garnet-type Li7– xLa3Zr2– xTaxO12(x= 0.25) solid electrolytes[J]. Chinese Physics B, 2013, 22(7): 078201. |
35 | LI Y Q, CAO Y, GUO X X. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes[J]. Solid State Ionics, 2013, 253: 76-80. |
36 | HUO H Y, LI X N, SUN Y P, et al. Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries[J]. Nano Energy, 2020, 73: 104836. |
37 | HUO H Y, LUO J, THANGADURAI V, et al. Li2CO3: A critical issue for developing solid garnet batteries[J]. ACS Energy Letters, 2020, 5(1): 252-262. |
38 | JIA M Y, ZHAO N, BI Z J, et al. Polydopamine-coated garnet particles homogeneously distributed in poly(propylene carbonate) for the conductive and stable membrane electrolytes of solid lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46162-46169. |
39 | FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019. |
40 | KELLER M, APPETECCHI G B, KIM G T, et al. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI[J]. Journal of Power Sources, 2017, 353: 287-297. |
41 | LU W Z, XUE M Z, ZHANG C M. Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries[J]. Energy Storage Materials, 2021, 39: 108-129. |
42 | LI L S, DENG Y F, CHEN G H. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries[J]. Journal of Energy Chemistry, 2020, 50: 154-177. |
43 | YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21773-21780. |
44 | ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. |
45 | ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. |
46 | CHOUDHURY S, STALIN S, VU D, et al. Solid-state polymer electrolytes for high-performance lithium metal batteries[J]. Nature Communications, 2019, 10: 4398. |
47 | 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略[J]. 物理学报, 2020, 69(22): 226201. |
LIANG Y H, FAN L Z. Mechanical failures in solid-state lithium batteries and their solution[J]. Acta Physica Sinica, 2020, 69(22): 226201. | |
48 | BUCCI G, SWAMY T, CHIANG Y M, et al. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design[EB/OL]. 2017: arXiv: 1703.00113[cond-mat.mtrl-sci]. https://arxiv.org/abs/1703.00113 |
49 | YAN X F, LI Z B, WEN Z Y, et al. Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte[J]. The Journal of Physical Chemistry C, 2017, 121(3): 1431-1435. |
50 | OHTA S, KOMAGATA S, SEKI J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources, 2013, 238: 53-56. |
51 | HAN F D, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508. |
52 | BI Z J, MU S, ZHAO N, et al. Cathode supported solid lithium batteries enabling high energy density and stable cyclability[J]. Energy Storage Materials, 2021, 35: 512-519. |
53 | BI Z J, HUANG W L, MU S, et al. Dual-interface reinforced flexible solid garnet batteries enabled by in situ solidified gel polymer electrolytes[J]. Nano Energy, 2021, 90: 106498. |
54 | DU F M, ZHAO N, LI Y Q, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources, 2015, 300: 24-28. |
55 | BI Z J, ZHAO N, MA L N, et al. Interface engineering on cathode side for solid garnet batteries[J]. Chemical Engineering Journal, 2020, 387: 124089. |
56 | HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255. |
57 | WANG L L, XIE R C, CHEN B B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nature Communications, 2020, 11: 5889. |
58 | DE KLERK N J J, WAGEMAKER M. Space-charge layers in all-solid-state batteries; Important or negligible?[J]. ACS Applied Energy Materials, 2018, 1(10): 5609-5618. |
59 | OHTA S, KOBAYASHI T, ASAOKA T. High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X = 0-2)[J]. Journal of Power Sources, 2011, 196(6): 3342-3345. |
60 | HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590. |
61 | ZHUANG Y, ZOU Z Y, LU B, et al. Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries[J]. Chinese Physics B, 2020, 29(6): 068202. |
62 | XIONG Z H, SHI S Q, OUYANG C Y, et al. Ab initio investigation of the surface properties of Cu(111) and Li diffusion in Cu thin film[J]. Physics Letters A, 2005, 337(3): 247-255. |
63 | 冯吴亮, 王飞, 周星, 等. 固态电解质与电极界面的稳定性[J]. 物理学报, 2020, 69(22): 137-149. |
FENG W L, WANG F, ZHOU X, et al. Stability of interphase between solid state electrolyte and electrode[J]. Acta Physica Sinica, 2020, 69(22): 137-149. | |
64 | MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396. |
65 | HUO H Y, CHEN Y, LI R Y, et al. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries[J]. Energy & Environmental Science, 2020, 13(1): 127-134. |
66 | HUO H Y, LIANG J N, ZHAO N, et al. Dynamics of the garnet/Li interface for dendrite-free solid-state batteries[J]. ACS Energy Letters, 2020, 5(7): 2156-2164. |
67 | KHOKHAR W A, ZHAO N, HUANG W L, et al. Different behaviors of metal penetration in Na and Li solid electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53781-53787. |
68 | ZHAO N, FANG R, HE M H, et al. Cycle stability of lithium/garnet/lithium cells with different intermediate layers[J]. Rare Metals, 2018, 37(6): 473-479. |
69 | SHARAFI A, KAZYAK E, DAVIS A L, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
70 | KIM S, JUNG C, KIM H, et al. The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte[J]. Advanced Energy Materials, 2020, 10(12): 1903993. |
71 | HUANG W L, ZHAO N, BI Z J, et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes? [J]. Materials Today Nano, 2020, 10: 100075. |
72 | ALEXANDER G V, PATRA S, SOBHAN RAJ S V, et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors[J]. Journal of Power Sources, 2018, 396: 764-773. |
73 | HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
74 | LIU X M, GARCIA-MENDEZ R, LUPINI A R, et al. Local electronic structure variation resulting in Li 'filament' formation within solid electrolytes[J]. Nature Materials, 2021, 20(11): 1485-1490. |
75 | HUO H Y, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, 12: 176. |
76 | MA C, CHENG Y Q, YIN K B, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy[J]. Nano Letters, 2016, 16(11): 7030-7036. |
77 | ZHU Y S, CONNELL J G, TEPAVCEVIC S, et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal[J]. Advanced Energy Materials, 2019, 9(12): 1803440. |
78 | PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003. |
79 | NING Z Y, JOLLY D S, LI G C, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nature Materials, 2021, 20(8): 1121-1129. |
80 | HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical "ceramic-in-polymer" and "polymer-in-ceramic" electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. |
81 | TIAN H K, CHAKRABORTY A, TALIN A A, et al. Evaluation of the electrochemo-mechanically induced stress in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(9): 090541. |
82 | HUO H Y, SUN J Y, CHEN C, et al. Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries[J]. Journal of Power Sources, 2018, 383: 150-156. |
83 | DOUX J M, NGUYEN H, TAN D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. |
84 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
[1] | 吴敬华, 杨菁, 刘高瞻, 王脂胭, 张秩华, 俞海龙, 姚霞银, 黄学杰. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. |
[2] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[3] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
[4] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
[5] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[6] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
[7] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[8] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[9] | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
[10] | 孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊. 固态聚合物锂电池失效机制及其表征技术[J]. 储能科学与技术, 2019, 8(6): 1024-1032. |
[11] | 张永龙, 夏会玲, 林久, 陈少杰, 许晓雄. 浅析固态锂离子电池安全性[J]. 储能科学与技术, 2018, 7(6): 994-1002. |
[12] | 夏求应, 孙硕, 徐璟, 昝峰, 岳继礼, 夏晖. 薄膜型全固态锂电池[J]. 储能科学与技术, 2018, 7(4): 565-574. |
[13] | 许晓雄,李泓. 为全固态锂电池“正名”[J]. 储能科学与技术, 2018, 7(1): 1-. |
[14] | 郭 玉 国. “高能量密度纳米固态金属锂电池研究”项目介绍[J]. 储能科学与技术, 2016, 5(6): 919-921. |
[15] | 李 泓1, 2,许晓雄3. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||