[1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414:359-367.
[2] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4):16103.
[3] ZHOU Y N, XUE M Z, FU Z W. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries[J]. Journal of Power Sources, 2013, 234:310-332.
[4] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282:299-322.
[5] HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5):572-579.
[6] CHEN R J, ZHANG Y B, LIU T, et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach[J]. ACS Applied Materials & Interfaces, 2017, 9(11):9654-9661.
[7] GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17):doi:https://doi.org/10.1002/.adma.201705702.
[8] BATES J B, DUDNEY N J, NEUDECKER B, et al. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics, 2000, 135(1/4):33-45.
[9] 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5):607-614. LI H, XU X X. R&D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 20165(5):607-614.
[10] 陈凯, 程丽乾. 体型无机全固态锂离子电池研究进展[J]. 硅酸盐学报, 2017, 45(6):785-792. CHEN K, CHENG L. Development on bulk-type inorganic all-solid-state lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2017, 45(6):785-792.
[11] NOWAK S, BERKEMEIER F, SCHMITZ G. Ultra-thin LiPON films-fundamental properties and application in solid state thin film model batteries[J]. Journal of Power Sources, 2015, 275:144-150.
[12] SCHWÖBEL A, JAEGERMANN W, HAUSBRAND R. Interfacial energy level alignment and energy level diagrams for all-solid Li-ion cells:Impact of Li-ion transfer and double layer formation[J]. Solid State Ionics, 2016, 288:224-228.
[13] GITTLESON F S, EL GABALY F. Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces[J]. Nano Letters, 2017, 17(11):6974-6982.
[14] 陈牧, 颜悦, 刘伟明, 等. 全固态薄膜锂电池研究进展和产业化展望[J]. 航空材料学报, 2014, 34(6):1-20. CHEN M, YAN Y, LIU W M, et al. Research advances and industrialization prospects of all-solid-state thin-film lithium battery[J]. Journal of Aeronautical Materials, 2014, 34(6):1-20.
[15] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. Journal of Power Sources, 1993, 43(1/3):103-110.
[16] WANG B, BATES J B, HART F X, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes[J]. Journal of the Electrochemical Society, 1996, 143(10):3203-3213.
[17] CHOI C H, CHO W I, CHO B W, et al. Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films[J]. Electrochemical and Solid-State Letters, 2002, 5(1):A14-A17.
[18] CHRISTIANSEN A S, STAMATE E, THYDÉN K, et al. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films[J]. Journal of Power Sources, 2015, 273:863-872.
[19] PUT B, VEREECKEN P M, MEERSSCHAUT J, et al. Electrical characterization of ultrathin RF-sputtered LiPON layers for nanoscale batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(11):7060-7069.
[20] LEE S J, BAE J H, LEE H W, et al. Electrical conductivity in Li-Si-P-O-N oxynitride thin-films[J]. Journal of Power Sources, 2003, 123(1):61-64.
[21] XIONG Y, TAO H, ZHAO J, et al. Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering[J]. Journal of Alloys and Compounds, 2011, 509(5):1910-1914.
[22] LÜ X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries[J]. Advanced Science, 2016, 3(3):doi:https://doi.org/10.1002/.advs. 201500359.
[23] CHEN H, TAO H, ZHAO X, et al. Fabrication and ionic conductivity of amorphous Li-Al-Ti-P-O thin film[J]. Journal of Non-Crystalline Solids, 2011, 357(16/17):3267-3271.
[24] KIM S, HIRAYAMA M, TAMINATO S, et al. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte[J]. Dalton Transactions, 2013, 42(36):13112-13117.
[25] TAKEHARA Z, OGUMI Z, UCHIMOTO Y, et al. Thin film solid-state lithium batteries prepared by consecutive vapor-phase processes[J]. Journal of the Electrochemical Society, 1991, 138(6):1574-1582.
[26] OHTSUKA H, SAKURAI Y. Characteristics of Li/MoO3-x thin film batteries[J]. Solid State Ionics, 2001, 144(1/2):59-64.
[27] BABA M, KUMAGAI N, KOBAYASHI H, et al. Fabrication and electrochemical characteristics of all-solid-state lithium-ion batteries using V2O5 thin films for both electrodes[J]. Electrochemical and Solid-State Letters, 1999, 2(7):320-322.
[28] PARK H Y, LEE S R, LEE Y J, et al. Bias sputtering and characterization of LiCoO2 thin film cathodes for thin film microbattery[J]. Materials Chemistry and Physics, 2005, 93(1):70-78.
[29] CHIU K F. Lithium cobalt oxide thin films deposited at low temperature by ionized magnetron sputtering[J]. Thin Solid Films, 2007, 515(11):4614-4618.
[30] IRIYAMA Y, NISHIMOTO K, YADA C, et al. Charge-transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium manganese oxide thin-film interface and its stability on cycling[J]. Journal of the Electrochemical Society, 2006, 153(5):A821-A825.
[31] BATES J B, LUBBEN D, DUDNEY N J. Thin-film Li-LiMn2O4 batteries[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(4):30-32.
[32] HONG J, WANG C, DUDNEY N J, et al. Characterization and performance of LiFePO4 thin-film cathodes prepared with radio-frequency magnetron-sputter deposition[J]. Journal of the Electrochemical Society, 2007, 154(8):A805-A809.
[33] WANG Y, YANG G, YANG Z, et al. High power and capacity of LiNi0.5Mn1.5O4 thin films cathodes prepared by pulsed laser deposition[J]. Electrochimica Acta, 2013, 102:416-422.
[34] YIM H, KONG W Y, KIM Y C, et al. Electrochemical properties of Li[Li0.2Mn0.54Co0.13Ni0.13] O2 cathode thin film by RF sputtering for all-solid-state lithium battery[J]. Journal of Solid State Chemistry, 2012, 196:288-292.
[35] XIA H, XIONG W, LIM C K, et al. Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries[J]. Nano Research, 2014, 7(12):1797-1808.
[36] XIA Q, JABEEN N, SAVILOV S V, et al. Black mesoporous Li4Ti5O12-δ nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries[J]. Journal of Materials Chemistry A, 2016, 4(44):17543-17551.
[37] GE M, RONG J, FANG X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5):2318-2323.
[38] MUKAIBO H, SUMI T, YOKOSHIMA T, et al. Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries[J]. Electrochemical and Solid-State Letters, 2003, 6(10):A218-A220.
[39] DUDNEY N J, NEUDECKER B J. Solid state thin-film lithium battery systems[J]. Current Opinion in Solid State and Materials Science, 1999, 4(5):479-482.
[40] LIANG C C, BRO P. A high-voltage, solid-state battery system i. design considerations[J]. Journal of the Electrochemical Society, 1969, 116(9):1322-1323.
[41] KANEHORI K, MATSUMOTO K, MIYAUCHI K, et al. Thin film solid electrolyte and its application to secondary lithium cell[J]. Solid State Ionics, 1983, 9:1445-1448.
[42] JONES S D, AKRIDGE J R. A thin-film solid-state microbattery[J]. Journal of Power Sources, 1993, 44(1-3):505-513.
[43] 刘文元, 王旭辉, 李驰麟, 等. 全固态薄膜锂/锂离子电池的研究进展[J]. 化学研究与应用, 2007, 19(9):953-958. LIU W, WANG X, LI C, et al. Progress in all-solid-state thin film lithium/Li-ion battery[J]. Chemical Research and Application, 2007, 19(9):953-958.
[44] 吴勇民, 吴晓萌, 朱蕾, 等. 全固态薄膜锂电池研究进展[J]. 储能科学与技术, 2016, 5(5):678-701. WU Y, WU X, ZHU L, et al. The development of studies in all-solid-state thin film lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5):678-701.
[45] Winter Green Research. Thin film batteries:market shares, strategies, and forecasts, worldwide, 2015 to 2021[EB/OL]. http://www.wintergreenresearch.com/thin-film-batteries.
[46] Acessible Clean Energy. Market for flat thin-film and printed batteries to grow to $1.1 billion by 2022[EB/OL]. https://accessiblecleanenergy.wordpress.com/2015/08/06/market-for-flat-thin-film-and-printed-batteries-to-grow-to-1-1-billion-by-2022/.
[47] Markets and Markets. Flexible Battery Market worth 958.4 Million USD by 2022[EB/OL]. https://www.marketsandmarkets.com/PressReleases/flexible-battery.asp.
[48] Infinite Power Solutions. Organic-free, all-solid-state thin-film batteriesfor cell phones, tablets, andfuture devices[EB/OL]. http://www.batterypoweronline.com/wp-content/uploads/2012/09/IPS-All-Solid-State-Battery-for-Cell-Phones.pdf
[49] BABA M, KUMAGAI N, FUJITA H, et al. Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source[J]. Journal of Power Sources, 2003, 119:914-917.
[50] ZHANG H, NING H, BUSBEE J, et al. Electroplating lithium transition metal oxides[J]. Science Advances, 2017, 3(5):doi:10.1126/.sciadv. 1602427. |