储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2834-2846.doi: 10.19799/j.cnki.2095-4239.2022.0424
王进芝1(), 韩晓蕾1, 许超锋1, 赵井文1,2(), 唐越3(), 崔光磊1,2()
收稿日期:
2022-07-29
修回日期:
2022-08-09
出版日期:
2022-09-05
发布日期:
2022-08-30
通讯作者:
赵井文,唐越,崔光磊
E-mail:wangjz@qibebt.ac.cn;zhaojw@qibebt.ac.cn;ytang86@asu.edu;cuigl@qibebt.ac.cn
作者简介:
王进芝(1994—),男,博士,研究方向为储能钠电池的材料与器件,E-mail:wangjz@qibebt.ac.cn;
基金资助:
Jinzhi WANG1(), Xiaolei HAN1, Chaofeng XU1, Jingwen ZHAO1,2(), Yue TANG3(), Guanglei CUI1,2()
Received:
2022-07-29
Revised:
2022-08-09
Online:
2022-09-05
Published:
2022-08-30
Contact:
Jingwen ZHAO, Yue TANG, Guanglei CUI
E-mail:wangjz@qibebt.ac.cn;zhaojw@qibebt.ac.cn;ytang86@asu.edu;cuigl@qibebt.ac.cn
摘要:
规模储能是碳中和多能互补生态系统中的关键一环,是连接清洁能源和智能电网的桥梁,是保障国家能源安全的重要举措,其中先进的二次电池是关键的核心技术。由于兼顾高功率密度、资源丰富等优势,基于氧化物固态电解质的钠电池(OSSBs),尤其是以液态金属钠为负极的体系,已成为最有发展潜力和应用价值的规模储能技术之一。但是,目前的OSSBs在长循环稳定性、安全性和成本方面仍存在不足,阻碍其实际广泛应用。重要的是,如何在降低成本的同时,实现OSSBs中表界面电化学行为的有效调控及对储能性能的提升已经成为目前研究的重点。本文重点介绍了近年来OSSBs的研究进展,主要针对钠-硫电池和钠-金属氯化物电池等在内的典型体系,从OSSBs成本控制、运行温度降低以及应用可靠性优化等几个关键方面分析了国内外的发展,进而提出了对储能钠电池的未来展望。
中图分类号:
王进芝, 韩晓蕾, 许超锋, 赵井文, 唐越, 崔光磊. 基于氧化物固态电解质的储能钠电池的研究进展[J]. 储能科学与技术, 2022, 11(9): 2834-2846.
Jinzhi WANG, Xiaolei HAN, Chaofeng XU, Jingwen ZHAO, Yue TANG, Guanglei CUI. Research progress of sodium energy storage batteries using oxide solid-state electrolytes[J]. Energy Storage Science and Technology, 2022, 11(9): 2834-2846.
表1
不同氧化物固态电解质的离子电导率"
类型 | 材料组成 | 离子电导率 /(S/cm) | 参考 文献 |
---|---|---|---|
β/β″-Al2O3 | β″-Al2O3 | 0.2~0.4 (300 ℃) | |
β″-Al2O3 + 0.4% MgO | 0.264 (400 ℃) | ||
β″-Al2O3 + 1% TiO2 + 10% ZrO2(质量分数) | 0.2 (350 ℃) | ||
β″-Al2O3 + 1.5% Ti + 10% Fe(摩尔分数) | 0.16 (350 ℃) | ||
β″-Al2O3 + 1% Nb2O5(质量分数) | 0.153 (300 ℃) | ||
β″-Al2O3 + 0.25% NiO(质量分数) | 0.066 (350 ℃) | ||
NA-SICON | Na3Zr2Si2PO12 | 6.7×10-4 (RT) | |
Na3.4Sc0.4Zr1.6Si2PO12 | 4×10-3 (RT) | ||
Na3.1Zr1.95Mg0.05Si2PO12 | 3.5×10-3 (RT) | ||
Na3.3Zr1.7La0.3Si2PO12 | 3.4×10-3 (RT) | ||
Na3Zr1.9Yb0.1Si2PO12 | 2.3×10-3 (RT) | ||
Na3Zr1.9Zn0.1Si2.2P0.8O12 | 5.27×10-3 (RT) |
1 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
2 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
3 | HITTINGER E, CIEZ R E. Modeling costs and benefits of energy storage systems[J]. Annual Review of Environment and Resources, 2020, 45: 445-469. |
4 | LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
5 | AL SHAQSI A Z, SOPIAN K, AL-HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306. |
6 | 彭林峰, 贾欢欢, 丁庆, 等. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
PENG L F, JIA H H, DING Q, et al. Research progress of solid-state sodium batteries using inorganic sodium ion conductors[J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. | |
7 | YUNG-FANG YU YAO, KUMMER J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina[J]. Journal of Inorganic and Nuclear Chemistry, 1967, 29(9): 2453-2475. |
8 | HOU W R, GUO X W, SHEN X Y, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291. |
9 | OSHIMA T, KAJITA M, OKUNO A. Development of sodium-sulfur batteries[J]. International Journal of Applied Ceramic Technology, 2005, 1(3): 269-276. |
10 | CHEN G, LU J, ZHOU X, et al. Solid-state synthesis of high performance Na-β″-Al2O3 solid electrolyte doped with MgO[J]. Ceram Int, 2016, 42 (14): 16055-16062. |
11 | YI E, TEMECHE E, LAINE R M. Superionically conducting β"-Al2O3 thin films processed using flame synthesized nanopowders[J]. Journal of Materials Chemistry A, 2018, 6(26): 12411-12419. |
12 | LEE S T, LEE D H, KIM J S, et al. Influence of Fe and Ti addition on properties of Na+-β/β"-alumina solid electrolytes[J]. Metals and Materials International, 2017, 23(2): 246-253. |
13 | XU D, JIANG H, LI Y, et al. The mechanical and electrical properties of Nb2O5 doped Na-β″-Al2O3 solid electrolyte[J]. The European Physical Journal Applied Physics, 2016, 74(1): 10901. |
14 | HONG Y F, HUANG P, ZHU C F. Synthesis and characterization of NiO doped beta-Al2O3 solid electrolyte[J]. Journal of Alloys and Compounds, 2016, 688: 746-751. |
15 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. |
16 | ZHAO C L, LIU L L, QI X G, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): 1703012. |
17 | MA Q, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28 (13): 4821-4828. |
18 | SONG S, DUONG H M, KORSUNSKY A M, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Scientific Reports, 2016, 6(1): 1-10. |
19 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7 (4): 1601196. |
20 | KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+ xZr2 -xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electrochimica Acta, 2016, 196: 337-347. |
21 | YANG J, LIU G, AVDEEV M, et al. Ultrastable all-solid-state sodium rechargeable batteries[J]. ACS Energy Letters, 2020, 5 (9): 2835-2841. |
22 | LI C, LI R, LIU K N, et al. NaSICON: A promising solid electrolyte for solid-state sodium batteries[J]. Interdisciplinary Materials, 2022, 1(3): 396-416. |
23 | SHEN L, DENG S G, JIANG R R, et al. Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries[J]. Energy Storage Materials, 2022, 46: 175-181. |
24 | CAI S, TIAN H Q, LIU J H, et al. Tuning Na3Hf2Si2PO12 electrolyte surfaces by metal coating for high-rate and long cycle life solid-state sodium ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(3): 1284-1289. |
25 | SESSA S D, PALONE F, NECCI A, et al. Sodium-nickel chloride battery experimental transient modelling for energy stationary storage[J]. Journal of Energy Storage, 2017, 9: 40-46. |
26 | 胡英瑛, 吴相伟, 温兆银, 等. 储能钠电池技术发展的挑战与思考[J]. 中国工程科学, 2021, 23(5): 94-102. |
HU Y Y, WU X W, WEN Z Y, et al. Challenges and thoughts on the development of sodium battery technology for energy storage[J]. Strategic Study of CAE, 2021, 23(5): 94-102. | |
27 | 李伟峰, 马素花, 沈晓冬, 等. 面向大规模电网储能的钠基电池研究进展[J]. 电源技术, 2015, 39(1): 213-216. |
LI W F, MA S H, SHEN X D, et al. Advances of sodium based batteries for large-scale energy storage of power grid[J]. Chinese Journal of Power Sources, 2015, 39(1): 213-216. | |
28 | ANDRIOLLO M, BENATO R, DAMBONE SESSA S, et al. Energy intensive electrochemical storage in Italy: 34.8 MW sodium-sulphur secondary cells[J]. Journal of Energy Storage, 2016, 5: 146-155. |
29 | VISWANATHAN L, IKUMA Y, VIRKAR A V. Transfomation toughening of β"-alumina by incorporation of zirconia[J]. Journal of Materials Science, 1983, 18(1): 109-113. |
30 | LIU L, MAEDA K, ONDA T, et al. Microstructure and improved mechanical properties of Al2O3/Ba-β-Al2O3/ZrO2 composites with YSZ addition[J]. Journal of the European Ceramic Society, 2018, 38(15): 5113-5121. |
31 | LIU L, MAEDA K, ONDA T, et al. Effect of YSZ with different Y2O3 contents on toughening behavior of Al2O3/Ba-β-Al2O3/ZrO2 composites[J]. Ceramics International, 2019, 45(14): 18037-18043. |
32 | LEE D H, LEE D G, LIM S K. Influence of MnO2 and Ta2O5/YSZ addition on properties of Na+-β/β"-alumina solid electrolytes prepared by a synthesizing-cum-sintering process[J]. Ceramics International, 2021, 47(17): 24743-24751. |
33 | ANSELL R. The chemical and electrochemical stability of beta-alumina[J]. Journal of Materials Science, 1986, 21(2): 365-379. |
34 | HU Y Y, WEN Z Y, WU X W, et al. Low-cost shape-control synthesis of porous carbon film on β"-alumina ceramics for Na-based battery application[J]. Journal of Power Sources, 2012, 219: 1-8. |
35 | HU Y Y, WEN Z Y, WU X W, et al. Nickel nanowire network coating to alleviate interfacial polarization for Na-β battery applications[J]. Journal of Power Sources, 2013, 240: 786-795. |
36 | CHANG H J, LU X C, BONNETT J F, et al. Decorating β''-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures[J]. Journal of Materials Chemistry A, 2018, 6(40): 19703-19711. |
37 | GUO X L, ZHANG L Y, DING Y, et al. Room-temperature liquid metal and alloy systems for energy storage applications[J]. Energy & Environmental Science, 2019, 12(9): 2605-2619. |
38 | LU X C, LI G S, KIM J Y, et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage[J]. Nature Communications, 2014, 5: 4578. |
39 | AHLBRECHT K, BUCHARSKY C, HOLZAPFEL M, et al. Investigation of the wetting behavior of Na and Na alloys on uncoated and coated Na-β"-alumina at temperatures below 150 ℃[J]. Ionics, 2017, 23(5): 1319-1327. |
40 | LI Y S, TANG Y F, LI X M, et al. In situ TEM studies of sodium polysulfides electrochemistry in high temperature Na-S nanobatteries[J]. Small, 2021, 17(23): e2100846. |
41 | 杜晨阳. 钠硫电池集流体表面Cr3C2涂层的制备与高温性能研究[D]. 长沙: 长沙理工大学, 2020.DU C Y. Preparation and high temperature performance of Cr3C2 coating on the surface of sodium sulfur battery current collector[D]. Changsha: Changsha University of Science & Technology, 2020. |
42 | WERTH J, KLEIN I, WYLIE R. The sodium chloride battery[C]// Symposium on the energy storage. Electrochemical Society, 1976: 198-205. |
43 | BIRK J R, WERTH J. Sodium chloride battery development program for load leveling [R]. ESB Technology Center, 1975. |
44 | COETZER J. A new high energy density battery system[J]. Journal of Power Sources, 1986, 18(4): 377-380. |
45 | ZHAN X W, LI M M, WELLER J M, et al. Recent progress in cathode materials for sodium-metal halide batteries[J]. Materials, 2021, 14(12): 3260. |
46 | 郭朝有, 徐海, 吴雄学. 钠-氯化镍动力电池安全性能研究[J]. 电源技术, 2014, 38(7): 1259-1261. |
GUO C Y, XU H, WU X X. Research on safety performance of sodium-nickel chloride power battery[J]. Chinese Journal of Power Sources, 2014, 38(7): 1259-1261. | |
47 | 曹佳弟.电动汽车用ZEBRA(钠/氯化镍)电池发展现状[J].电池工业,1999, 4(6):221-225. |
CAO J D. Development of ZEBRA (Na/NiCl2) battery for EV applications[J]. Battery Industry, 1999, 4(6):221-225. | |
48 | GAO X P, HU Y Y, LI Y P, et al. High-rate and long-life intermediate-temperature Na-NiCl2 battery with dual-functional Ni-carbon composite nanofiber network[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24767-24776. |
49 | LI Y P, WU X W, WANG J Y, et al. Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries[J]. Chemical Engineering Journal, 2020, 387: 124059. |
50 | 胡英瑛, 王静宜, 吴相伟, 等. 管式ZEBRA电池的长循环性能与电压弛豫曲线的分析研究[J]. 储能科学与技术, 2020, doi: 10.19799/j.cnki.2095-4239.2022.0256. |
HU Y Y, WANG J Y, WU X W, et al. Analysis of long cycle performance and voltage relaxation curves of tubular ZEBRA batteries[J]. Energy Storage Science and Technology, 2022, doi: 10.19799/j.cnki.2095-4239.2022.0256. | |
51 | LI G S, LU X C, KIM J Y, et al. An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application[J]. Advanced Energy Materials, 2015, 5(12): 1500357. |
52 | AHN C W, KIM M, HAHN B D, et al. Microstructure design of metal composite for active material in sodium nickel-iron chloride battery[J]. Journal of Power Sources, 2016, 329: 50-56. |
53 | ZHAN X W, BOWDEN M E, LU X C, et al. A low-cost durable Na-FeCl2 battery with ultrahigh rate capability[J]. Advanced Energy Materials, 2020, 10(10): 1903472. |
54 | LU X C, LI G S, KIM J Y, et al. A novel low-cost sodium-zinc chloride battery[J]. Energy & Environmental Science, 2013, 6(6): 1837. |
55 | LEE Y, KIM H J, BYUN D J, et al. Electrochemically activated Na-ZnCl2 battery using a carbon matrix in the cathode compartment[J]. Journal of Power Sources, 2019, 440: 227110. |
56 | LI G S, LU X C, COYLE C A, et al. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries[J]. Journal of Power Sources, 2012, 220: 193-198. |
57 | KIM J, JO S H, BHAVARAJU S, et al. Low temperature performance of sodium-nickel chloride batteries with NASICON solid electrolyte[J]. Journal of Electroanalytical Chemistry, 2015, 759: 201-206. |
[1] | 胡英瑛, 王静宜, 吴相伟, 温建国, 温兆银. 管式ZEBRA电池的长循环性能与电压弛豫曲线分析[J]. 储能科学与技术, 2022, 11(9): 3021-3027. |
[2] | 张斌伟, 魏子栋, 孙世刚. 室温钠硫电池硫化钠正极的发展现状与应用挑战[J]. 储能科学与技术, 2022, 11(9): 2811-2824. |
[3] | 胡英瑛, 吴相伟, 温兆银. 储能钠硫电池的工程化研究进展与展望[J]. 储能科学与技术, 2021, 10(3): 781-799. |
[4] | 缪平, 姚祯, 刘庆华, 王保国. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. |
[5] | 刘庆华, 张赛, 蒋明哲, 王秋实, 邢学奇, 杨虹, 黄峰, LEMMON P John, 缪平. 低成本液流电池储能技术研究[J]. 储能科学与技术, 2019, 8(S1): 60-64. |
[6] | 孟祥飞, 庞秀岚, 崇锋, 侯少攀, 祁斌. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术, 2019, 8(S1): 38-42. |
[7] | 敖 昕,吴相伟,胡瑛瑛,温兆银. 单质硫对钠-氯化镍电池循环性能影响的机理分析[J]. 储能科学与技术, 2016, 5(3): 349-354. |
[8] | 胡英瑛, 温兆银, 芮琨, 吴相伟. 钠电池的研究与开发现状[J]. 储能科学与技术, 2013, 2(2): 81-90. |
[9] | 张 华 民. 储能与液流电池技术[J]. 储能科学与技术, 2012, 1(1): 58-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||