1 |
袁泉, 汤奕. 基于路-电耦合网络的电动汽车需求响应技术[J]. 中国电机工程学报, 2021, 41(5): 1627-1637.
|
|
YUAN Q, TANG Y. Electric vehicle demand response technology based on traffic-grid coupling networks[J]. Proceedings of the CSEE, 2021, 41(5): 1627-1637.
|
2 |
胡建, 林春景, 郝维健, 等. 动力电池标准体系建设现状及建议[J]. 储能科学与技术, 2022, 11(1): 313-320.
|
|
HU J, LIN C J, HAO W J, et al. Current status and suggestions for the construction of power battery standard system[J]. Energy Storage Science and Technology, 2022, 11(1): 313-320.
|
3 |
YOKOYAMA A, OSAKA T, IMANISHI Y, et al. Thermal management system for electric vehicles[J]. SAE International Journal of Materials and Manufacturing, 2011, 4(1): 1277-1285.
|
4 |
LEE J T, KWON S, LIM Y, et al. Effect of air-conditioning on driving range of electric vehicle for various driving modes[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013.
|
5 |
王正, 张俊华. 欧盟汽车空调指令对汽车企业的影响分析[J]. 制冷与空调(四川), 2014, 28(4): 491-495.
|
|
WANG Z, ZHANG J H. The effect analysis of EU vehicle air-condition directives to civil automobile companies[J]. Refrigeration & Air Conditioning, 2014, 28(4): 491-495.
|
6 |
王雷, 窦艳伟, 王黎. 美国SNAP在制冷剂HCFC替代中的作用[J]. 电器, 2016(2): 64-65.
|
7 |
LORENTZEN G, PETTERSEN J. A new, efficient and environmentally benign system for car air-conditioning[J]. International Journal of Refrigeration, 1993, 16(1): 4-12.
|
8 |
ARAL M C, SUHERMANTO M, HOSOZ M. Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a[J]. Science and Technology for the Built Environment, 2021, 27(1): 44-60.
|
9 |
SHI J Y,GAO T Y,LU B Q,et al. Researches on heat pump system using rotary compressor in electric vehicle[C]// 16th International Refrigeration and Air Conditioning Conference, 2016.
|
10 |
YU B B, YANG J Y, WANG D D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: doi: 10.1016/j.energy.2019.116147.
|
11 |
李敏霞, 马一太, 李丽新, 苏维城. CO2跨临界循环制冷压缩机的研究进展[J]. 压缩机技术, 2004(5): 38-42.
|
|
LI M X, MA Y T, LI L X, et al. Reviews of refrigeration compressor in CO2 transcritical cycle[J]. Compressor Technology, 2004(5): 38-42.
|
12 |
PETTERSEN J, HAFNER A, SKAUGEN G, et al. Development of compact heat exchangers for CO2 air-conditioning systems[J]. International Journal of Refrigeration, 1998, 21(3): 180-193.
|
13 |
YANG J L, MA Y T, LI M X, et al. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander[J]. Energy, 2005, 30(7): 1162-1175.
|
14 |
RIGOLA J, ABLANQUE N, PÉREZ-SEGARRA C D, et al. Numerical simulation and experimental validation of internal heat exchanger influence on CO2 trans-critical cycle performance[J]. International Journal of Refrigeration, 2010, 33(4): 664-674.
|
15 |
ROBINSON D M, GROLL E A. Efficiencies of transcritical CO2 cycles with and without an expansion turbine[J]. International Journal of Refrigeration, 1998, 21(7): 577-589.
|
16 |
RIGOLA J, ABLANQUE N, PÉREZ-SEGARRA C D, et al. Numerical simulation and experimental validation of internal heat exchanger influence on CO2 trans-critical cycle performance[J]. International Journal of Refrigeration, 2010, 33(4): 664-674.
|
17 |
CHO H, RYU C, KIM Y. Cooling performance of a variable speed CO2 cycle with an electronic expansion valve and internal heat exchanger[J]. International Journal of Refrigeration, 2007, 30(4): 664-671.
|
18 |
TORRELLA E, SÁNCHEZ D, LLOPIS R, et al. Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data[J]. International Journal of Refrigeration, 2011, 34(1): 40-49.
|
19 |
赵玲华, 魏新利, 杨凌晓, 等. 回热对跨临界CO2热泵系统性能影响的实验研究[J]. 工程热物理学报, 2020, 41(1): 186-195.
|
|
ZHAO L H, WEI X L, YANG L X, et al. Experimental study on the compacts of regenerative heat on the performance of the transcritical CO2 heat pump system[J]. Journal of Engineering Thermophysics, 2020, 41(1): 186-195.
|
20 |
CHEN Y, GU J J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers[J]. International Journal of Refrigeration, 2005, 28(8): 1238-1249.
|
21 |
LU S X, LIANG R B, ZHANG J L, et al. Performance improvement of solar photovoltaic/thermal heat pump system in winter by employing vapor injection cycle[J]. Applied Thermal Engineering, 2019, 155: 135-146.
|
22 |
何俊, 陶乐仁, 虞中旸. 降低制冷系统压缩机排气温度的方法研究[J]. 轻工机械, 2018, 36(2): 77-81.
|
|
HE J, TAO L R, YU Z Y. Research on method of reducing compressor exhaust temperature in refrigeration system[J]. Light Industry Machinery, 2018, 36(2): 77-81.
|
23 |
BAEK C, LEE E, KANG H, et al. Experimental study on the heating performance of a CO2 heat pump with gas injection[C]// International and Air Conditioning Conference at Purdue, 2008.
|
24 |
CHO H, BAEK C, PARK C, et al. Performance evaluation of a two-stage CO2 cycle with gas injection in the cooling mode operation[J]. International Journal of Refrigeration, 2009, 32(1): 40-46.
|
25 |
HEO J, JEONG M W, KIM Y. Effects of flash tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions[J]. International Journal of Refrigeration, 2010, 33(4): 848-855.
|
26 |
TELLO-OQUENDO F M, NAVARRO-PERIS E, GONZÁLVEZ-MACIÁ J. Comparison of the performance of a vapor-injection scroll compressor and a two-stage scroll compressor working with high pressure ratios[J]. Applied Thermal Engineering, 2019, 160: doi: 10.1016/j.applthermaleng.2019.114023.
|
27 |
WANG X, YU J L, XING M B. Performance analysis of a new ejector enhanced vapor injection heat pump cycle[J]. Energy Conversion and Management, 2015, 100: 242-248.
|
28 |
JUNG J, JEON Y, CHO W, et al. Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles[J]. Energy, 2020, 193: doi:10.1016/j.energy.2019.116751.
|
29 |
SUZUKI T, ISHII K. Air conditioning system for electric vehicle[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996.
|
30 |
何贤, 胡静, 钱程, 等. 纯电动汽车两种热泵空调系统的实验研究[J]. 制冷学报, 2018, 39(3): 79-84.
|
|
HE X, HU J, QIAN C, et al. Experimental study on two kinds of heat-pump air-conditioning system used in pure electric vehicle[J]. Journal of Refrigeration, 2018, 39(3): 79-84.
|
31 |
ITOH S,IRITANI K. Heat pump type refrigerant cycle system for electric vehicle air conditioner: US 6237351-B1[P]. 2001-05-29.
|
32 |
HIGUCHI Y, KOBAYASHI H, SHAN Z W, et al. Efficient heat pump system for PHEV/BEV[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017.
|
33 |
徐晓斌, 徐业飞, 张恒运, 等. 风冷电池模组热性能及成组效率的多目标优化[J]. 储能科学与技术, 2022, 11(2): 553-562.
|
|
XU X B, XU Y F, ZHANG H Y, et al. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module[J]. Energy Storage Science and Technology, 2022, 11(2): 553-562.
|
34 |
胡志林, 张天强, 杨钫. 苹果电动汽车热管理技术研究[J]. 汽车文摘, 2021(1): 37-41.
|
|
HU Z L, ZHANG T Q, YANG F. Research on thermal management technology of apple electric vehicle[J]. Automotive Digest, 2021(1): 37-41.
|