电池健康状态(state of health, SOH)的准确估计是电池管理系统的关键技术之一,对保障电动汽车安全、可靠运行至关重要。针对当前高斯过程回归(gaussian process regression,GPR)中单一核函数泛化性能不足,超参数选取易陷入局部最优导致SOH估计精度较低的问题,提出一种灰狼优化算法(grey wolf optimization,GWO)和组合核函数改进GPR的SOH估计方法。首先,基于容量增量分析法提取用于表征电池老化的特征,对电池恒流充电的容量-电压曲线插值并以差分法计算容量增量(increment capacity,IC)曲线,应用Savitzky-Golay滤波平滑处理,提取峰值高度、峰值电压及峰面积作为健康特征;其次,引入多维尺度变换(multidimensional scaling, MDS)消除特征冗余性同时降低模型计算复杂度,利用Pearson系数验证所提健康特征与SOH的相关性;然后,结合SOH退化轨迹的非线性和电池容量再生的准周期性特点,将神经网络核函数与周期核函数组合作为GPR的协方差核函数,以GWO对组合核函数超参数的初值进行优化;最后,基于NASA电池数据集将所提方法与SVR、ELM、GPR模型作对比,检验GWO-GPR模型的准确性,估计结果的最大均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别为1.03%和0.5%,以第60、80、100个循环为估计起始点,验证模型的鲁棒性,结果显示最大RMSE控制在1.03%以内。
关键词:锂离子电池
;
健康状态
;
容量增量曲线
;
高斯过程回归
;
灰狼优化算法
Abstract
Accurate estimation of the battery state of health (SOH) is a critical technology in battery management systems, which is crucial for ensuring the safe and reliable operation of electric vehicles. To solve the problem of low SOH estimation accuracy due to insufficient generalization performance of a single kernel function in Gaussian process regression (GPR) and the tendency of hyperparameter selection to fall into local optimality, an SOH estimation method based on the grey wolf optimization algorithm (GWO) and a combined kernel function was proposed. First, the characteristics of battery aging were extracted using incremental capacity analysis (ICA) method. The capacity-voltage curve of constant-current charging of the battery was interpolated and the increment capacity (IC) curve was calculated using the difference method. The IC curve was smoothed using Savitzky-Golay filtering, and the peak height, voltage, and area were extracted as health features. Second, multidimensional scaling (MDS) was presented to eliminate feature redundancy and reduce the computational complexity of the model. The Pearson coefficient was used to verify the correlation between the proposed health features and SOH. Then, considering the nonlinearity of the SOH degradation trajectory and the quasi-periodicity of battery capacity regeneration, the combination of the neural network kernel function and periodic kernel function was used as the covariance kernel function of GPR, and the initial hyperparameters of the combined kernel function were optimized by the GWO method. Finally, the proposed method was compared with SVR, ELM, and GPR models based on the NASA battery data set to verify the accuracy of the GWO-GPR model. The 60th, 80th, and 100th cycles were used as estimation starting points to verify the robustness of the model.
Keywords:lithium-ion battery
;
state of health
;
increment capacity curve
;
gaussian process regression
;
grey wolf optimization algorithm
WANG Chen. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518
面对环境污染和化石能源短缺的双重压力,电动汽车被认为是推进电气化交通、优化能源结构、改善空气质量的重要举措,在全世界得到推广应用[1]。动力电池是电动汽车最核心的部件,锂离子电池作为一种清洁能源,以其能量密度高、循环寿命长、无记忆效应、续航能力强等诸多优点,成为了新一代电动汽车的首选动力源[2]。然而在使用过程中,其内部会发生复杂的化学反应,导致SEI膜加厚、电极材料和电解质溶液损耗等,电池的安全性降低、续驶里程减少[3]。因此实现电池健康状态(state of health,SOH)准确估计是锂离子电池安全应用的基础[4]。
LI L, YOU S X, YANG C, et al. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses[J]. Applied Energy, 2016, 162: 868-879.
ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2022, 46(3): 2141-2165.
RUAN H K, WEI Z B, SHANG W T, et al. Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging[J]. Applied Energy, 2023, 336: 120751.
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009.
LI J F, WANG D F, DENG L, et al. Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 31: 101538.
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
BIAN X L, WEI Z B, LI W H, et al. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2226-2236.
GUHA A, PATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 135-146.
LING L Y, WEI Y. State-of-charge and state-of-health estimation for lithium-ion batteries based on dual fractional-order extended Kalman filter and online parameter identification[J]. IEEE Access, 2021, 9: 47588-47602.
CHU A, ALLAM A, CORDOBA ARENAS A, et al. Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2020, 478: 228991.
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325.
ZHENG Y J, OUYANG M G, LU L G, et al. Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution[J]. Journal of Power Sources, 2015, 278: 287-295.
WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173: 134-140.
YAYAN U, ARSLAN A T, YUCEL H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data[J]. Applied Artificial Intelligence, 2021, 35(6): 421-439.
WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25.
NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688.
CHEN L, WANG H M, LI Y J, et al. Battery state-of-health estimation by using metabolic extreme learning machine[J]. Automotive Engineering, 2021, 43(1): 10-18.
YANG N K, SONG Z Y, HOFMANN H, et al. Robust state of health estimation of lithium-ion batteries using convolutional neural network and random forest[J]. Journal of Energy Storage, 2022, 48: 103857.
SHENG H M, LIU X, BAI L B, et al. Small sample state of health estimation based on weighted Gaussian process regression[J]. Journal of Energy Storage, 2021, 41: 102816.
RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357: 209-219.
SHEN J W, MA W S, XIAO R X, et al. Available capacity estimation of lithium-ion batteries based on optimized Gaussian process regression[J]. China Journal of Highway and Transport, 2022, 35(8): 31-43.
WANG P, PENG X Y, CHENG Z. SOH estimation method for lithium-ion batteries based on DTV-IGPR model[J]. Automotive Engineering, 2021, 43(11): 1710-1719.
HUANG H, HU S Y, SUN Y. A discrete curvature estimation based low-distortion adaptive savitzky-golay filter for ECG denoising[J]. Sensors, 2019, 19(7): 1617.
CHEN Z, LI L L, SHU X, et al. Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35(8): 20-30.
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569.
... 面对环境污染和化石能源短缺的双重压力,电动汽车被认为是推进电气化交通、优化能源结构、改善空气质量的重要举措,在全世界得到推广应用[1].动力电池是电动汽车最核心的部件,锂离子电池作为一种清洁能源,以其能量密度高、循环寿命长、无记忆效应、续航能力强等诸多优点,成为了新一代电动汽车的首选动力源[2].然而在使用过程中,其内部会发生复杂的化学反应,导致SEI膜加厚、电极材料和电解质溶液损耗等,电池的安全性降低、续驶里程减少[3].因此实现电池健康状态(state of health,SOH)准确估计是锂离子电池安全应用的基础[4]. ...
1
... 面对环境污染和化石能源短缺的双重压力,电动汽车被认为是推进电气化交通、优化能源结构、改善空气质量的重要举措,在全世界得到推广应用[1].动力电池是电动汽车最核心的部件,锂离子电池作为一种清洁能源,以其能量密度高、循环寿命长、无记忆效应、续航能力强等诸多优点,成为了新一代电动汽车的首选动力源[2].然而在使用过程中,其内部会发生复杂的化学反应,导致SEI膜加厚、电极材料和电解质溶液损耗等,电池的安全性降低、续驶里程减少[3].因此实现电池健康状态(state of health,SOH)准确估计是锂离子电池安全应用的基础[4]. ...
1
... 面对环境污染和化石能源短缺的双重压力,电动汽车被认为是推进电气化交通、优化能源结构、改善空气质量的重要举措,在全世界得到推广应用[1].动力电池是电动汽车最核心的部件,锂离子电池作为一种清洁能源,以其能量密度高、循环寿命长、无记忆效应、续航能力强等诸多优点,成为了新一代电动汽车的首选动力源[2].然而在使用过程中,其内部会发生复杂的化学反应,导致SEI膜加厚、电极材料和电解质溶液损耗等,电池的安全性降低、续驶里程减少[3].因此实现电池健康状态(state of health,SOH)准确估计是锂离子电池安全应用的基础[4]. ...
1
... 面对环境污染和化石能源短缺的双重压力,电动汽车被认为是推进电气化交通、优化能源结构、改善空气质量的重要举措,在全世界得到推广应用[1].动力电池是电动汽车最核心的部件,锂离子电池作为一种清洁能源,以其能量密度高、循环寿命长、无记忆效应、续航能力强等诸多优点,成为了新一代电动汽车的首选动力源[2].然而在使用过程中,其内部会发生复杂的化学反应,导致SEI膜加厚、电极材料和电解质溶液损耗等,电池的安全性降低、续驶里程减少[3].因此实现电池健康状态(state of health,SOH)准确估计是锂离子电池安全应用的基础[4]. ...
1
... 面对环境污染和化石能源短缺的双重压力,电动汽车被认为是推进电气化交通、优化能源结构、改善空气质量的重要举措,在全世界得到推广应用[1].动力电池是电动汽车最核心的部件,锂离子电池作为一种清洁能源,以其能量密度高、循环寿命长、无记忆效应、续航能力强等诸多优点,成为了新一代电动汽车的首选动力源[2].然而在使用过程中,其内部会发生复杂的化学反应,导致SEI膜加厚、电极材料和电解质溶液损耗等,电池的安全性降低、续驶里程减少[3].因此实现电池健康状态(state of health,SOH)准确估计是锂离子电池安全应用的基础[4]. ...