1 |
LI L, YOU S X, YANG C, et al. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses[J]. Applied Energy, 2016, 162: 868-879.
|
2 |
ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2022, 46(3): 2141-2165.
|
3 |
RUAN H K, WEI Z B, SHANG W T, et al. Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging[J]. Applied Energy, 2023, 336: 120751.
|
4 |
肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009.
|
|
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009.
|
5 |
LI J F, WANG D F, DENG L, et al. Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 31: 101538.
|
6 |
戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649.
|
|
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
|
7 |
BIAN X L, WEI Z B, LI W H, et al. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2226-2236.
|
8 |
GUHA A, PATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 135-146.
|
9 |
LING L Y, WEI Y. State-of-charge and state-of-health estimation for lithium-ion batteries based on dual fractional-order extended Kalman filter and online parameter identification[J]. IEEE Access, 2021, 9: 47588-47602.
|
10 |
CHU A, ALLAM A, CORDOBA ARENAS A, et al. Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2020, 478: 228991.
|
11 |
周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325.
|
|
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325.
|
12 |
ZHENG Y J, OUYANG M G, LU L G, et al. Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution[J]. Journal of Power Sources, 2015, 278: 287-295.
|
13 |
WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173: 134-140.
|
14 |
YAYAN U, ARSLAN A T, YUCEL H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data[J]. Applied Artificial Intelligence, 2021, 35(6): 421-439.
|
15 |
WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25.
|
16 |
NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688.
|
17 |
陈琳, 王惠民, 李熠婧, 等. 用新陈代谢极限学习机实现电池健康状态估算[J]. 汽车工程, 2021, 43(1): 10-18.
|
|
CHEN L, WANG H M, LI Y J, et al. Battery state-of-health estimation by using metabolic extreme learning machine[J]. Automotive Engineering, 2021, 43(1): 10-18.
|
18 |
YANG N K, SONG Z Y, HOFMANN H, et al. Robust state of health estimation of lithium-ion batteries using convolutional neural network and random forest[J]. Journal of Energy Storage, 2022, 48: 103857.
|
19 |
SHENG H M, LIU X, BAI L B, et al. Small sample state of health estimation based on weighted Gaussian process regression[J]. Journal of Energy Storage, 2021, 41: 102816.
|
20 |
RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357: 209-219.
|
21 |
申江卫, 马文赛, 肖仁鑫, 等. 基于优化高斯过程回归算法的锂离子电池可用容量估算[J]. 中国公路学报, 2022, 35(8): 31-43.
|
|
SHEN J W, MA W S, XIAO R X, et al. Available capacity estimation of lithium-ion batteries based on optimized Gaussian process regression[J]. China Journal of Highway and Transport, 2022, 35(8): 31-43.
|
22 |
王萍, 彭香园, 程泽. 基于DTV-IGPR模型的锂离子电池SOH估计方法[J]. 汽车工程, 2021, 43(11): 1710-1719.
|
|
WANG P, PENG X Y, CHENG Z. SOH estimation method for lithium-ion batteries based on DTV-IGPR model[J]. Automotive Engineering, 2021, 43(11): 1710-1719.
|
23 |
HUANG H, HU S Y, SUN Y. A discrete curvature estimation based low-distortion adaptive savitzky-golay filter for ECG denoising[J]. Sensors, 2019, 19(7): 1617.
|
24 |
陈峥, 李磊磊, 舒星, 等. 基于改进容量增量分析法的锂电池可用容量估计[J]. 中国公路学报, 2022, 35(8): 20-30.
|
|
CHEN Z, LI L L, SHU X, et al. Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35(8): 20-30.
|
25 |
王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569.
|
|
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569.
|