锂离子电池均衡系统主要用于解决电池组工作过程中出现的不一致现象,但现有研究在需要权衡多个均衡指标时,均衡阈值的选取缺乏理论基础。为解决该问题,本工作提出了基于非支配排序遗传算法(non-dominated sorting genetic algorithm-II,NSGA-II)对锂离子电池均衡系统的均衡指标进行优化的计算框架。首先,以均衡阈值(ΔV )作为问题参数,兼顾均衡速度、开关次数、荷电状态(state of charge,SOC)一致性最小作为多个均衡指标建立目标函数,并给出阈值与均衡指标关系式求解的方法,建立优化锂电池均衡指标的问题模型;然后,使用NSGA-II算法对多个均衡指标进行优化,并设计相应的决策策略;最后,在新欧洲驾驶循环(new European driving cycle,NEDC)工况和高速燃油经济性测试循环(highway fuel economy test,HWFET)工况下对所提算法的有效性进行验证。结果表明,电池组一致性、均衡速度相近的情况下,NEDC工况下最佳阈值ΔV =0.0232的开关频率是经验阈值ΔV =0.01的42%;同样,在HWFET工况下最优阈值ΔV =0.0156的开关频率是经验阈值ΔV =0.01的43.6%。本工作所提方法解决了以往均衡阈值难以确定的问题,使均衡系统的设计变得科学有效。
关键词:NSGA-II遗传算法
;
多目标优化
;
锂电池均衡
;
均衡指标
;
均衡阈值
Abstract
Lithium-ion battery equalization systems are primarily used to address inconsistencies during battery pack operation. However, existing studies lack a theoretical basis for selecting the equalization threshold when considering multiple equalization metrics. To address this problem, the paper proposes a computational framework based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to optimize the equalization metrics of the Li-ion battery equalization system. First, the equalization threshold (ΔV ) is used as the problem parameter, and the equalization speed, the number of switching actions, and SOCconsistency are considered as multiple equalization indicators to establish the objective function. A method for determining the relationship between the threshold and equalization indicators is given to establish the problem model for optimizing Li-ion battery equalization indicators. Then, the NSGA-II algorithm is used to optimize the multiple equalization indicators and design the corresponding decision strategy. Finally, the effectiveness of the proposed algorithm is verified under New European Driving Cycle (NEDC) and Highway Fuel Economy Test (HWFET) conditions. The results show that the switching frequency of the optimal threshold ΔV = 0.0232 is 42% of the empirical threshold ΔV =0.01 for the NEDC condition, with similar battery pack consistency and equalization speed. Similarly, the switching frequency of the optimal threshold ΔV =0.0156 is 43.6% of the empirical threshold ΔV =0.01 for the HWFET condition. The proposed method in this paper addresses the challenge of determining the equalization threshold and enables a more scientific and effective design of equalization systems.
LIU Yuling. NSGA-II genetic algorithm-based optimization of the lithium battery equalization index[J]. Energy Storage Science and Technology, 2023, 12(6): 1946-1956
Fig. 1
Schematic diagram of three typical balanced topologies
均衡系统的关键一步是判断电池组当前是否需要均衡,所以均衡系统需要选择均衡指标并设定相应的阈值(均衡阈值)去评估电池组当前的一致性状态。常见的均衡指标有电压[14-15]、荷电状态[16-18](state of charge,SOC)以及容量[19]。为了评估均衡系统的均衡性能则应该设定相应指标(均衡指标)来评价系统在均衡后应达到的状态,比如电池组电压一致性、SOC一致性、系统的均衡速度等。而根据均衡拓扑选择的不同,系统也会将一些其他的均衡指标纳入考虑范围。比如,主动均衡拓扑会设定诸如储能元件个数、开关个数、均衡成本等多个指标;可重构均衡拓扑则会设定诸如开关次数、均衡成本等均衡指标。
Fig. 2
Flowchart for designing a lithium battery equalization system
本工作选择如图1(b)所示的均衡拓扑,该拓扑仅需为每块单体分别配备1个串联电力电子开关(Sci,i=1,2,…,n)、一个并联电力电子开关(Spi,i=1,2,…,n)。其工作原理为:接通并联电力电子开关Spi,关断串联开关Sci 便可将单体Cell i 旁路出电池组;相反,接通串联电力电子开关Sci,关断并联开关Spi 便可将单体Cell i 接入电池组。
利用MATLAB/Simulink仿真实验平台搭建由6块额定容量为1500 mAh、额定电压为3.60 V的磷酸铁锂电池单体组成的可重构两开关均衡系统,并应用NSGA-II算法对该均衡系统进行优化。实验设置电池组分别工作在新欧洲驾驶循环(new European driving cycle,NEDC)工况及高速燃油经济性测试循环(highway fuel economy test,HWFET)工况,且各单体的初始SOC分别设置为[SOC1,SOC2,SOC3,SOC4,SOC5,SOC6]=[95%,96%,92%,90%,85%,85%]。根据电池组的初始SOC及式(8)可得均衡阈值的范围为:
确定阈值的范围之后便可以根据范围收集NEDC工况及HWFET工况下系统运行的经验数据。然后根据经验数据及式(6)中的约束条件可进一步得到NEDC和HWFET工况的取值范围如式(13)所示,接着使用MATLAB分别拟合得到该范围内ΔV 与Nsw、Teq、 σSOC的关系式如图6所示。由于图中拟合结果的误差平方和(sum of squares due to error,SSE)均为0,确定系数(coefficient of determination,R-square) 均为1,故本实验对数据的拟合效果较好,即所确定的关系式能够应用到后续实验过程。
TIAN M Y, ZHU J, CEN G J, et al. A review of 100 papers on lithium batteries (2021.10.1-2021.11.30)[J]. Energy Storage Science and Technology, 2022, 11(1): 297-312.
HU X S, SUN F C, ZOU Y A. Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive luenberger observer[J]. Energies, 2010, 3(9): 1586-1603.
ZHANG C P, JIANG Y, JIANG J C, et al. Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries[J]. Applied Energy, 2017, 207: 510-519.
BAUMHÖFER T, BRÜHL M, ROTHGANG S, et al. Production caused variation in capacity aging trend and correlation to initial cell performance[J]. Journal of Power Sources, 2014, 247: 332-338.
LIU J F. Research on efficient balance strategy of lithium iron phosphate battery by integrating monomer voltage and SOC inconsistency[D].Chongqing: Chongqing University, 2021.
AMIN, ISMAIL K, NUGROHO A, et al. Passive balancing battery management system using MOSFET internal resistance as balancing resistor[C]// 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA). IEEE, 2017: 151-155.
VITOLS K. Design of an embedded battery management system with passive balancing[C]// 2014 6th European Embedded Design in Education and Research Conference (EDERC). IEEE, 2014: 142-146.
KIM H, SHIN K G. On dynamic reconfiguration of a large-scale battery system[C]// 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE, 2009: 87-96.
KIM T, QIAO W, QU L Y. Series-connected reconfigurable multicell battery: A novel design towards smart batteries[C]// 2010 IEEE Energy Conversion Congress and Exposition. IEEE, 2010: 4257-4263.
LIU C H, REN H B. Research on active equalization of power batteries based on state of charge[J]. Energy Storage Science and Technology, 2022, 11(2): 667-672.
LEE K M, LEE S W, CHOI Y G, et al. Active balancing of Li-ion battery cells using transformer as energy carrier[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1251-1257.
GUO X W, GENG J H, BU X H, et al. Research on novel equalization topology of series battery pack based on flyback converter[J]. Energy Storage Science and Technology, 2020, 9(3): 979-985.
PARK S H, PARK K B, KIM H S, et al. Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings[J]. IEEE Transactions on Power Electronics, 2012, 27(6): 2900-2911.
DI RIENZO R, ZENI M, BARONTI F, et al. Passive balancing algorithm for charge equalization of series connected battery cells[C]// 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). IEEE, 2020: 73-79.
HUANG X R, ACHARYA A B, MENG J H, et al. Wireless smart battery management system for electric vehicles[C]// 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020: 5620-5625.
FROST D F, HOWEY D A. Completely decentralized active balancing battery management system[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 729-738.
DING K, QIAN Y M, CHEN Q, et al. Multitimescale equalization method for lithium-ion battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(12): 3872-3882.
XUE F, SANDERSON A C, GRAVES R J. Pareto-based multi-objective differential evolution[C]// The 2003 Congress on Evolutionary Computation. IEEE, 2004: 862-869.
MADAVAN N K. Multiobjective optimization using a Pareto differential evolution approach[C]// Proceedings of the 2002 Congress on Evolutionary Computation. IEEE, 2002: 1145-1150.
ALI M, SIARRY P, PANT M. An efficient Differential Evolution based algorithm for solving multi-objective optimization problems[J]. European Journal of Operational Research, 2012, 217(2): 404-416.
MOSTAGHIM S, TEICH J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)[C]// Proceedings of the 2003 IEEE Swarm Intelligence Symposium. IEEE, 2003: 26-33.
LIN Q Z, LI J Q, DU Z H, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247(3): 732-744.
NIU H Q, LI X X, CHEN Z M, et al. Phase sequence optimization of tunnel multi-circuit cables based on improved genetic algorithm[J]. Electric Power Engineering Technology, 2023, 42(2): 147-153.
DEB K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. Evolutionary Computation, 1999, 7(3): 205-230.
YU W, LI B Z, JIA H Y, et al. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design[J]. Energy and Buildings, 2015, 88: 135-143.
DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[M]// SCHOENAUER M, DEB K, RUDOLPH G, et al. Parallel Problem Solving from Nature PPSN VI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000: 849-858.
ZHANG D B, LIU J W, JIAO S F, et al. Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II[J]. Energy, 2019, 189: doi: 10.1016/j.energy.2019.116121.
WEN X Y, WANG K H, LI H, et al. A two-stage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop[J]. Swarm and Evolutionary Computation, 2021, 61: doi: 10.1016/j.swevo.2020.100820.
GU T M, WANG P Y, LIANG F Y, et al. Placement and capacity selection of battery energy storage system in the distributed generation integrated distribution network based on improved NSGA-II optimization[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104716.
CHEN C Z, SUN Y L. Optimization strategy for multi-fault repair of distribution system based on adaptive NSGA-Ⅱ algorithm[J]. Electric Power Engineering Technology, 2022, 41(3): 125-132.
ZHENG Y J, OUYANG M G, LU L G, et al. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model[J]. Applied Energy, 2013, 111: 571-580.
MA R, JIA X C, ZHANG Y K, et al. Modeling and parameter identification of energy storage lithium batteries based on cubic spline interpolation[J/OL]. Journal of Power Supply:1-16[2023-02-10]. http://kns.cnki.net/kcms/detail/ 12.1420.TM.20210118. 1722. 002.html.
ZHENG X, LIU S X, XING J, et al. Photoelastic Brazilian splitting test based on cubic spline interpolation method[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(S1): 140-146.
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
... 均衡系统的关键一步是判断电池组当前是否需要均衡,所以均衡系统需要选择均衡指标并设定相应的阈值(均衡阈值)去评估电池组当前的一致性状态.常见的均衡指标有电压[14-15]、荷电状态[16-18](state of charge,SOC)以及容量[19].为了评估均衡系统的均衡性能则应该设定相应指标(均衡指标)来评价系统在均衡后应达到的状态,比如电池组电压一致性、SOC一致性、系统的均衡速度等.而根据均衡拓扑选择的不同,系统也会将一些其他的均衡指标纳入考虑范围.比如,主动均衡拓扑会设定诸如储能元件个数、开关个数、均衡成本等多个指标;可重构均衡拓扑则会设定诸如开关次数、均衡成本等均衡指标. ...
2
... 均衡系统的关键一步是判断电池组当前是否需要均衡,所以均衡系统需要选择均衡指标并设定相应的阈值(均衡阈值)去评估电池组当前的一致性状态.常见的均衡指标有电压[14-15]、荷电状态[16-18](state of charge,SOC)以及容量[19].为了评估均衡系统的均衡性能则应该设定相应指标(均衡指标)来评价系统在均衡后应达到的状态,比如电池组电压一致性、SOC一致性、系统的均衡速度等.而根据均衡拓扑选择的不同,系统也会将一些其他的均衡指标纳入考虑范围.比如,主动均衡拓扑会设定诸如储能元件个数、开关个数、均衡成本等多个指标;可重构均衡拓扑则会设定诸如开关次数、均衡成本等均衡指标. ...
... 均衡系统的关键一步是判断电池组当前是否需要均衡,所以均衡系统需要选择均衡指标并设定相应的阈值(均衡阈值)去评估电池组当前的一致性状态.常见的均衡指标有电压[14-15]、荷电状态[16-18](state of charge,SOC)以及容量[19].为了评估均衡系统的均衡性能则应该设定相应指标(均衡指标)来评价系统在均衡后应达到的状态,比如电池组电压一致性、SOC一致性、系统的均衡速度等.而根据均衡拓扑选择的不同,系统也会将一些其他的均衡指标纳入考虑范围.比如,主动均衡拓扑会设定诸如储能元件个数、开关个数、均衡成本等多个指标;可重构均衡拓扑则会设定诸如开关次数、均衡成本等均衡指标. ...
... 均衡系统的关键一步是判断电池组当前是否需要均衡,所以均衡系统需要选择均衡指标并设定相应的阈值(均衡阈值)去评估电池组当前的一致性状态.常见的均衡指标有电压[14-15]、荷电状态[16-18](state of charge,SOC)以及容量[19].为了评估均衡系统的均衡性能则应该设定相应指标(均衡指标)来评价系统在均衡后应达到的状态,比如电池组电压一致性、SOC一致性、系统的均衡速度等.而根据均衡拓扑选择的不同,系统也会将一些其他的均衡指标纳入考虑范围.比如,主动均衡拓扑会设定诸如储能元件个数、开关个数、均衡成本等多个指标;可重构均衡拓扑则会设定诸如开关次数、均衡成本等均衡指标. ...
... 均衡系统的关键一步是判断电池组当前是否需要均衡,所以均衡系统需要选择均衡指标并设定相应的阈值(均衡阈值)去评估电池组当前的一致性状态.常见的均衡指标有电压[14-15]、荷电状态[16-18](state of charge,SOC)以及容量[19].为了评估均衡系统的均衡性能则应该设定相应指标(均衡指标)来评价系统在均衡后应达到的状态,比如电池组电压一致性、SOC一致性、系统的均衡速度等.而根据均衡拓扑选择的不同,系统也会将一些其他的均衡指标纳入考虑范围.比如,主动均衡拓扑会设定诸如储能元件个数、开关个数、均衡成本等多个指标;可重构均衡拓扑则会设定诸如开关次数、均衡成本等均衡指标. ...
1
... 均衡系统的关键一步是判断电池组当前是否需要均衡,所以均衡系统需要选择均衡指标并设定相应的阈值(均衡阈值)去评估电池组当前的一致性状态.常见的均衡指标有电压[14-15]、荷电状态[16-18](state of charge,SOC)以及容量[19].为了评估均衡系统的均衡性能则应该设定相应指标(均衡指标)来评价系统在均衡后应达到的状态,比如电池组电压一致性、SOC一致性、系统的均衡速度等.而根据均衡拓扑选择的不同,系统也会将一些其他的均衡指标纳入考虑范围.比如,主动均衡拓扑会设定诸如储能元件个数、开关个数、均衡成本等多个指标;可重构均衡拓扑则会设定诸如开关次数、均衡成本等均衡指标. ...