1 |
田孟羽, 朱璟, 岑官骏, 等. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312.
|
|
TIAN M Y, ZHU J, CEN G J, et al. A review of 100 papers on lithium batteries (2021.10.1-2021.11.30)[J]. Energy Storage Science and Technology, 2022, 11(1): 297-312.
|
2 |
HU X S, SUN F C, ZOU Y A. Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive luenberger observer[J]. Energies, 2010, 3(9): 1586-1603.
|
3 |
ZHANG C P, JIANG Y, JIANG J C, et al. Study on battery pack consistency evolutions and equilibrium diagnosis for serial- connected lithium-ion batteries[J]. Applied Energy, 2017, 207: 510-519.
|
4 |
BAUMHÖFER T, BRÜHL M, ROTHGANG S, et al. Production caused variation in capacity aging trend and correlation to initial cell performance[J]. Journal of Power Sources, 2014, 247: 332-338.
|
5 |
刘建飞. 融合单体电压和SOC不一致性的磷酸铁锂电池组高效均衡策略研究[D]. 重庆: 重庆大学, 2021.
|
|
LIU J F. Research on efficient balance strategy of lithium iron phosphate battery by integrating monomer voltage and SOC inconsistency[D].Chongqing: Chongqing University, 2021.
|
6 |
AMIN, ISMAIL K, NUGROHO A, et al. Passive balancing battery management system using MOSFET internal resistance as balancing resistor[C]// 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA). IEEE, 2017: 151-155.
|
7 |
VITOLS K. Design of an embedded battery management system with passive balancing[C]// 2014 6th European Embedded Design in Education and Research Conference (EDERC). IEEE, 2014: 142-146.
|
8 |
CI S, ZHANG J C, SHARIF H, et al. Dynamic reconfigurable multi-cell battery: A novel approach to improve battery performance[C]// 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2012: 439-442.
|
9 |
KIM H, SHIN K G. On dynamic reconfiguration of a large-scale battery system[C]// 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE, 2009: 87-96.
|
10 |
KIM T, QIAO W, QU L Y. Series-connected reconfigurable multicell battery: A novel design towards smart batteries[C]// 2010 IEEE Energy Conversion Congress and Exposition. IEEE, 2010: 4257-4263.
|
11 |
刘春辉, 任宏斌. 基于SOC的动力电池组主动均衡研究[J]. 储能科学与技术, 2022, 11(2): 667-672.
|
|
LIU C H, REN H B. Research on active equalization of power batteries based on state of charge[J]. Energy Storage Science and Technology, 2022, 11(2): 667-672.
|
12 |
LEE K M, LEE S W, CHOI Y G, et al. Active balancing of Li-ion battery cells using transformer as energy carrier[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1251-1257.
|
13 |
郭向伟, 耿佳豪, 卜旭辉, 等. 基于反激变换器的串联电池组新型均衡方法研究[J]. 储能科学与技术, 2020, 9(3): 979-985.
|
|
GUO X W, GENG J H, BU X H, et al. Research on novel equalization topology of series battery pack based on flyback converter[J]. Energy Storage Science and Technology, 2020, 9(3): 979-985.
|
14 |
PARK S H, PARK K B, KIM H S, et al. Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings[J]. IEEE Transactions on Power Electronics, 2012, 27(6): 2900-2911.
|
15 |
DI RIENZO R, ZENI M, BARONTI F, et al. Passive balancing algorithm for charge equalization of series connected battery cells[C]// 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). IEEE, 2020: 73-79.
|
16 |
MAJMUNOVIC B, SARDA R, TEODORESCU R, et al. Highly efficient smart battery pack for EV drivetrains[C]// 2017 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2018: 1-5.
|
17 |
HUANG X R, ACHARYA A B, MENG J H, et al. Wireless smart battery management system for electric vehicles[C]// 2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020: 5620-5625.
|
18 |
FROST D F, HOWEY D A. Completely decentralized active balancing battery management system[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 729-738.
|
19 |
丁凯, 钱一民, 陈乔, 等. 锂离子电池储能系统多时间尺度均衡方法[J]. 储能科学与技术, 2022, 11(12): 3872-3882.
|
|
DING K, QIAN Y M, CHEN Q, et al. Multitimescale equalization method for lithium-ion battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(12): 3872-3882.
|
20 |
XUE F, SANDERSON A C, GRAVES R J. Pareto-based multi-objective differential evolution[C]// The 2003 Congress on Evolutionary Computation. IEEE, 2004: 862-869.
|
21 |
MADAVAN N K. Multiobjective optimization using a Pareto differential evolution approach[C]// Proceedings of the 2002 Congress on Evolutionary Computation. IEEE, 2002: 1145-1150.
|
22 |
BASU M. Economic environmental dispatch using multi-objective differential evolution[J]. Applied Soft Computing, 2011, 11(2): 2845-2853.
|
23 |
ALI M, SIARRY P, PANT M. An efficient Differential Evolution based algorithm for solving multi-objective optimization problems[J]. European Journal of Operational Research, 2012, 217(2): 404-416.
|
24 |
MOSTAGHIM S, TEICH J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)[C]// Proceedings of the 2003 IEEE Swarm Intelligence Symposium. IEEE, 2003: 26-33.
|
25 |
LIN Q Z, LI J Q, DU Z H, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247(3): 732-744.
|
26 |
牛海清, 李小潇, 陈泽铭, 等. 基于改进遗传算法的隧道多回路电缆群相序优化[J]. 电力工程技术, 2023, 42(2): 147-153.
|
|
NIU H Q, LI X X, CHEN Z M, et al. Phase sequence optimization of tunnel multi-circuit cables based on improved genetic algorithm[J]. Electric Power Engineering Technology, 2023, 42(2): 147-153.
|
27 |
DEB K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems[J]. Evolutionary Computation, 1999, 7(3): 205-230.
|
28 |
YU W, LI B Z, JIA H Y, et al. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design[J]. Energy and Buildings, 2015, 88: 135-143.
|
29 |
DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[M]// SCHOENAUER M, DEB K, RUDOLPH G, et al. Parallel Problem Solving from Nature PPSN VI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000: 849-858.
|
30 |
ZHANG D B, LIU J W, JIAO S F, et al. Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II[J]. Energy, 2019, 189: doi: 10.1016/j.energy.2019.116121.
|
31 |
WEN X Y, WANG K H, LI H, et al. A two-stage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop[J]. Swarm and Evolutionary Computation, 2021, 61: doi: 10.1016/j.swevo.2020.100820.
|
32 |
GU T M, WANG P Y, LIANG F Y, et al. Placement and capacity selection of battery energy storage system in the distributed generation integrated distribution network based on improved NSGA-II optimization[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104716.
|
33 |
陈楚昭, 孙云莲. 基于自适应NSGA-Ⅱ算法的配电网多故障抢修优化决策[J]. 电力工程技术, 2022, 41(3): 125-132.
|
|
CHEN C Z, SUN Y L. Optimization strategy for multi-fault repair of distribution system based on adaptive NSGA-Ⅱ algorithm[J]. Electric Power Engineering Technology, 2022, 41(3): 125-132.
|
34 |
ZHANG R F, XIA B Z, LI B H, et al. State of the art of lithium-ion battery SOC estimation for electrical vehicles[J]. Energies, 2018, 11(7): 1820.
|
35 |
ZHENG Y J, OUYANG M G, LU L G, et al. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model[J]. Applied Energy, 2013, 111: 571-580.
|
36 |
马锐,贾学翠,张永康,等.基于三次样条插值法的储能锂电池建模与参数辨识[J/OL].电源学报:1-16[2023-02-10]. http://kns.cnki.net/kcms/detail/ 12.1420.TM.20210118.1722.002.html.
|
|
MA R, JIA X C, ZHANG Y K, et al. Modeling and parameter identification of energy storage lithium batteries based on cubic spline interpolation[J/OL]. Journal of Power Supply:1-16[2023-02-10]. http://kns.cnki.net/kcms/detail/ 12.1420.TM.20210118. 1722. 002.html.
|
37 |
郑旭, 刘树新, 邢杰, 等. 基于三次样条插值法的光弹性巴西劈裂试验[J]. 地下空间与工程学报, 2022, 18(S1): 140-146.
|
|
ZHENG X, LIU S X, XING J, et al. Photoelastic Brazilian splitting test based on cubic spline interpolation method[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(S1): 140-146.
|
38 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|