储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1928-1945.doi: 10.19799/j.cnki.2095-4239.2023.0005
张家俊1,3,4(), 李晓琼2, 张振涛2,3, 郝佳豪2,3,4, 郑平洋2,3,4, 于泽3,4, 杨俊玲2, 荆亚楠5, 越云凯2,3,4()
收稿日期:
2023-01-06
修回日期:
2022-04-06
出版日期:
2023-06-05
发布日期:
2023-06-21
通讯作者:
越云凯
E-mail:z18842162443@163.com;yueyunkai@mail.ipc.ac.cn
作者简介:
张家俊(1999—),男,硕士研究生,研究方向为二氧化碳储能系统,E-mail:z18842162443@163.com;
基金资助:
Jiajun ZHANG1,3,4(), Xiaoqiong LI2, Zhentao ZHANG2,3, Jiahao HAO2,3,4, Pingyang ZHENG2,3,4, Ze YU3,4, Junling YANG2, Yanan JING5, Yunkai YUE2,3,4()
Received:
2023-01-06
Revised:
2022-04-06
Online:
2023-06-05
Published:
2023-06-21
Contact:
Yunkai YUE
E-mail:z18842162443@163.com;yueyunkai@mail.ipc.ac.cn
摘要:
压缩二氧化碳储能技术作为一种新型的压缩气体储能技术,具有储能密度大、经济成本低、运行寿命长、负碳排放等多方面优势,适合我国大规模长时储能系统建设和可持续发展的需求,具有非常广阔的发展前景。本文对比分析了压缩二氧化碳储能系统相比于压缩空气储能系统的优势,梳理了压缩二氧化碳储能技术的分类,其中详细介绍了跨临界二氧化碳储能系统、超临界二氧化碳储能系统和液态二氧化碳储能系统的运行原理、系统性能以及适用场景等方面特点,阐述了系统关键运行参数对系统性能的影响规律以及系统?损分布情况,得出系统性能的提升方法,进一步介绍了压缩二氧化碳储能系统的改进系统以及耦合其他外部能源系统的压缩二氧化碳储能系统对系统性能的提升效果,最后分析了压缩二氧化碳储能系统的优势和发展方向。本文旨在总结当前压缩二氧化碳储能技术研究成果,指出现有压缩二氧化碳储能系统的优缺点,为后续学者研究压缩二氧化碳储能系统指引方向,也为压缩二氧化碳储能系统实验及示范的建立提供参考。
中图分类号:
张家俊, 李晓琼, 张振涛, 郝佳豪, 郑平洋, 于泽, 杨俊玲, 荆亚楠, 越云凯. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945.
Jiajun ZHANG, Xiaoqiong LI, Zhentao ZHANG, Jiahao HAO, Pingyang ZHENG, Ze YU, Junling YANG, Yanan JING, Yunkai YUE. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945.
1 | Energy & Climate Intelligence Unit. Net zero emissions race[EB/OL]. [2020-08-20] https://eciu.net/netzerotracker/map. |
2 | 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[N]. 人民日报, 2023-03-01(009). |
State Statistical Bureau. Statistical Bulletin of the People's Republic of China 2022[N]. People's Daily, 2023-03-01 (009). | |
3 | HAMEER S, VAN NIEKERK J L. A review of large-scale electrical energy storage[J]. International Journal of Energy Research, 2015, 39(9): 1179-1195. |
4 | 习近平. 继往开来, 开启全球应对气候变化新征程——在气候雄心峰会上的讲话[J].一带一路报道(中英文), 2021, 27(1): 20-21. |
XI J P. Following the past, start a new journey of global response to climate change-a speech at the Climate Abstellar Summit[J]. Belt and Road Report (Chinese and English), 2021, 27(1): 20-21. | |
5 | 中国电力企业联合会. 新能源配储能运行情况调研报告[R]. 海口: 中电联, 2022. |
China Electricity Council. New energy distribution storage operation research report[R]. Haikou: China Electricity Council, 2022. | |
6 | 陈永翀, 李爱晶, 刘丹丹, 等. 储能技术在能源互联网系统中应用与发展展望[J]. 电器与能效管理技术, 2015(24): 39-44. |
CHEN Y C, LI A J, LIU D D, et al. Application and development of energy storage in energy Internet system[J]. Low Voltage Apparatus, 2015(24): 39-44. | |
7 | NYAMDASH B, DENNY E, O'MALLEY M. The viability of balancing wind generation with large scale energy storage[J]. Energy Policy, 2010, 38(11): 7200-7208. |
8 | 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. |
WU H W, WANG J, GONG Y L, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. | |
9 | 李建林, 李雅欣, 周喜超. 电网侧储能技术研究综述[J]. 电力建设, 2020, 41(6):77-84. |
LI J L, LI Y X, ZHOU X C. Summary of research on grid-side energy storage technology[J]. Electric Power Construction, 2020, 41(6): 77-84. | |
10 | VILANOVA M R N, FLORES A T, BALESTIERI J A P. Pumped hydro storage plants: A review[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(8): 1-14. |
11 | ZHAO H R, WU Q W, HU S J, et al. Review of energy storage system for wind power integration support[J]. Applied Energy, 2015, 137: 545-553. |
12 | HUNT J D, BYERS E, WADA Y, et al. Global resource potential of seasonal pumped hydropower storage for energy and water storage[J]. Nature Communications, 2020, 11: 947. |
13 | YU Q H, WANG Q C, TAN X, et al. A review of compressed-air energy storage[J]. Journal of Renewable and Sustainable Energy, 2019, 11(4): doi: 10.1063/1.5095969. |
14 | BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. |
15 | KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable Energy Technologies and Assessments, 2015, 11: 159-164. |
16 | ALAMI A H, HAWILI A A, HASSAN R, et al. Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system[J]. Renewable Energy, 2019, 134: 603-611. |
17 | ZHU R, HAN B C, DONG K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process[J].International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1421-1429. |
18 | FU L P, REN Z K, SI W Z, et al. Research progress on CO2 capture and utilization technology[J]. Journal of CO2 Utilization, 2022, 66: doi: 10.1016/j.jcou.2022.102260. |
19 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. | |
20 | 杨科, 张远, 李雪梅, 等. 一种以二氧化碳为工质的压缩气体储能系统: CN203420754U[P]. 2014-02-05. |
YANG K, ZHANG Y, LI X M, et al. Energy storage system of compressed gas with carbon dioxide as working medium: CN203420754U[P]. 2014-02-05. | |
21 | 郝佳豪, 越云凯, 张振涛, 等. 一种跨临界二氧化碳储能系统: CN114622960A[P]. 2022-06-14. |
HAO J H, YUE Y K, ZHANG Z T, et al. Transcritical carbon dioxide energy storage system: CN114622960A[P]. 2022-06-14. | |
22 | 韩越, 李睿, 孙世超, 等. 压缩空气储能+的多能耦合技术研究进展[J]. 能源研究与利用, 2022(3): 25-29. |
HAN Y, LI R, SUN S C, et al. Research progress of multi-energy coupling technology for compressed air energy storage+[J]. Energy Research & Utilization, 2022(3): 25-29. | |
23 | 苗颖. 四川德阳全球首个二氧化碳+飞轮储能示范项目进入收尾调试阶段[J]. 施工企业管理, 2022, 409(9): 118. |
24 | HE Q, LIU H, HAO Y P, et al. Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis[J]. Renewable Energy, 2018, 127: 835-849. |
25 | 韩中合, 郭森闯, 王珊, 等. 不同工质和储气室下压气储能系统的特性研究[J]. 太阳能学报, 2020, 41(9): 29-35. |
HAN Z H, GUO S C, WANG S, et al. Investigation of characteristics of compressed gas energy storage system under different working mediums and gas storage chambers[J]. Acta Energiae Solaris Sinica, 2020, 41(9): 29-35. | |
26 | ZHANG Y, YANG K, HONG H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697. |
27 | 喻浩. 深部含水层压缩二氧化碳储能系统的数值模拟研究[D]. 长沙: 长沙理工大学, 2019. |
YU H. Numerical simulation of compressed carbon dioxide energy storage system in deep aquifer[D]. Changsha: Changsha University of Science & Technology, 2019. | |
28 | LI Y, YU H, TANG D, et al. A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods[J]. Renewable Energy, 2022, 187: 1130-1153. |
29 | 刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学(北京), 2017. |
LIU H. Study on thermodynamic characteristics and thermal economy of supercritical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2017. | |
30 | 何青, 郝银萍, 刘文毅. 一种新型跨临界压缩二氧化碳储能系统热力分析与改进[J]. 华北电力大学学报(自然科学版), 2020, 47(5): 93-101. |
HE Q, HAO Y P, LIU W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University, 2020, 47(5): 93-101. | |
31 | ZHANG X R, WANG G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41(10): 1487-1503. |
32 | XU W P, ZHAO P, LIU A J, et al. Design and off-design performance analysis of a liquid carbon dioxide energy storage system integrated with low-grade heat source[J]. Applied Thermal Engineering, 2023, 228: doi: 10.1016/j.applthermaleng.2023. 120570. |
33 | 刘青山, 葛俊, 黄葆华, 等. 储能压力对液态压缩空气储能系统特性的影响[J]. 西安交通大学学报, 2019, 53(11): 1-9. |
LIU Q S, GE J, HUANG B H, et al. Influence of energy storage pressure on the characteristics of liquid air energy storage system[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 1-9. | |
34 | LIU Z, LIU Z H, XIN X, et al. Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2020. 115067. |
35 | BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: History, state of the art and recent developments[J]. Renewable and Sustainable Energy Reviews, 2021, 137: doi: 10.1016/j.rser.2020.110572. |
36 | WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823. |
37 | WANG M K, ZHAO P, YANG Y, et al. Performance analysis of energy storage system based on liquid carbon dioxide with different configurations[J]. Energy, 2015, 93: 1931-1942. |
38 | WU C, WAN Y K, LIU Y, et al. Thermodynamic simulation and economic analysis of a novel liquid carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105544. |
39 | LIU S C, WU S C, HU Y K, et al. Comparative analysis of air and CO2 as working fluids for compressed and liquefied gas energy storage technologies[J]. Energy Conversion and Management, 2019, 181: 608-620. |
40 | 吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49, 100. |
WU Y, HU D S, WANG M K, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi'an Jiaotong University, 2016, 50(3): 45-49, 100. | |
41 | 杨征, 陈海生, 王亮, 等. 蓄热对超临界空气储能系统性能的影响[J]. 电力建设, 2016, 37(8): 33-37. |
YANG Z, CHEN H S, WANG L, et al. Influence of thermal energy storage on performance of supercritical air energy storage system[J]. Electric Power Construction, 2016, 37(8): 33-37. | |
42 | 王俊, 曹建军, 张利勇, 等. 基于分布式能源系统的蓄冷蓄热技术应用现状[J]. 储能科学与技术, 2020, 9(6): 1847-1857. |
WANG J, CAO J J, ZHANG L Y, et al. Review on application of cold storage and heat storage technology based on distributed energy system[J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857. | |
43 | SUN W X, LIU X, YANG X Q, et al. Design and thermodynamic performance analysis of a new liquid carbon dioxide energy storage system with low pressure stores[J]. Energy Conversion and Management, 2021, 239: doi: 10.1016/j.enconman.2021. 114227. |
44 | TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: doi: 10.1016/j.applthermaleng.2022.118957. |
45 | 吴思成. 压缩CO2储能的系统分析及实验验证[D]. 天津: 天津商业大学, 2019. |
WU S C. System analysis and experimental verification of compressed CO2 energy storage[D]. Tianjin: Tianjin University of Commerce, 2019. | |
46 | 李玉平. 压缩二氧化碳储能系统的热力学性能分析[D]. 北京: 华北电力大学, 2018. |
LI Y P. Thermodynamic performance analysis of compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2018. | |
47 | 李玉平, 徐玉杰, 李斌, 等. 跨临界二氧化碳储能系统研究[J]. 中国电机工程学报, 2018, 38(21): 6367-6374. |
LI Y P, XU Y J, LI B, et al. Research on transcritical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21): 6367-6374. | |
48 | XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: doi: 10.1016/j.applthermaleng.2020.116153. |
49 | ZHANG J J, ZHOU S N, SONG W J, et al. Performance analysis of a compressed liquid carbon dioxide energy storage system[J]. Energy Procedia, 2018, 152: 168-173. |
50 | LU C, HE Q, HAO Y P, et al. Thermodynamic analysis and efficiency improvement of trans-critical compressed carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105480. |
51 | DINCER I, ROSEN M A. Energy, environment and sustainable development[J]. Applied Energy, 1999, 64(1/2/3/4): 427-440. |
52 | TSATSARONIS G, MOROSUK T. Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas[J]. Energy, 2010, 35(2): 820-829. |
53 | 李乐璇, 徐玉杰, 尹钊, 等. 超临界二氧化碳储能系统㶲损特性分析[J]. 储能科学与技术, 2021, 10(5): 1824-1834. |
LI L X, XU Y J, YIN Z, et al. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. | |
54 | LIU Z, LIU Z H, YANG X Q, et al. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system[J]. Energy Conversion and Management, 2020, 205: doi: 10.1016/j.enconman.2019.112391. |
55 | ZHANG Y, YAO E R, WANG T Y. Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102274. |
56 | ZHANG Y, LIANG T Y, YANG K. An integrated energy storage system consisting of compressed carbon dioxide energy storage and organic Rankine cycle: Exergoeconomic evaluation and multi-objective optimization[J]. Energy, 2022, 247: doi: 10.1016/j.energy.2022.123566. |
57 | CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf[J]. Energy Conversion and Management, 2020, 211: doi: 10.1016/j.enconman.2020.112788. |
58 | CHAE Y J, LEE J I. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: doi: 10.1016/j.enconman.2022.115374. |
59 | 严晓生, 王小东, 韩旭, 等. 液态压缩二氧化碳储能与火电机组耦合方案研究[J]. 热力发电, 2023, 52(2): 90-100. |
YAN X S, WANG X D, HAN X, et al. Study on coupling scheme of liquid compressed carbon dioxide energy storage system and thermal power unit[J]. Thermal Power Generation, 2023, 52(2): 90-100. | |
60 | 郝银萍. 跨临界压缩二氧化碳储能系统热力学特性及技术经济性研究[D]. 北京: 华北电力大学, 2021. |
HAO Y P. Study on thermodynamic characteristics and technical economy of transcritical compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2021. | |
61 | 陶飞跃, 王焕然, 李瑞雄, 等. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. | |
62 | FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: doi: 10.1016/j.enconman.2021.114757. |
63 | XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: doi: 10.1016/j.jclepro.2019. 118437. |
[1] | 孙晓霞, 桂中华, 高梓玉, 周冰倩, 刘夏, 张新敬, 郭欢, 李文, 盛勇, 朱阳历, 周健, 徐玉杰. 压缩空气储能系统动态运行特性[J]. 储能科学与技术, 2023, 12(6): 1840-1853. |
[2] | 秦婷婷, 周学志, 郭丁彰, 盛勇, 徐玉杰, 左志涛, 李辉, 陈海生. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. |
[3] | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
[4] | 李洪涛, 张帅, 李旭东, 纪运广, 孙明旭, 李欣. 单罐式储能换热系统在热风无纺布工艺中的应用[J]. 储能科学与技术, 2022, 11(7): 2250-2257. |
[5] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[6] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[7] | 周晗, 李正宇, 徐俊辉, 陈留平, 龚领会. 我国可再生能源与盐穴氢储能技术耦合发电的分析与展望[J]. 储能科学与技术, 2022, 11(12): 4059-4066. |
[8] | 汤匀, 岳芳, 郭楷模, 李岚春, 陈伟. 下一代电化学储能技术国际发展态势分析[J]. 储能科学与技术, 2022, 11(1): 89-97. |
[9] | 张子岩, 张俊艳. 基于高质量专利的储能关键技术国际竞争态势[J]. 储能科学与技术, 2022, 11(1): 321-334. |
[10] | 姚祯, 王锐, 阳雪, 张琦, 刘庆华, 王保国, 缪平. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
[11] | 周升辉, 何阳, 陈海生, 徐玉杰, 邓建强. 喷射器强化压缩空气储能充能过程[J]. 储能科学与技术, 2021, 10(5): 1503-1513. |
[12] | 李扬, 张新敬, 宋健斐, 李笑宇, 郭欢, 徐玉杰, 陈海生. 压缩空气储能系统释能过程动态调控[J]. 储能科学与技术, 2021, 10(5): 1514-1523. |
[13] | 李乐璇, 徐玉杰, 尹钊, 郭欢, 张显荣, 陈海生, 周学志. 超临界二氧化碳储能系统㶲损特性分析[J]. 储能科学与技术, 2021, 10(5): 1824-1834. |
[14] | 饶中浩, 刘臣臻, 霍宇涛, 赵佳腾, 刘昌会. 面向储能技术的跨学科拔尖创新人才培养教学实践与探索[J]. 储能科学与技术, 2021, 10(3): 1206-1212. |
[15] | 刘庆华, 张赛, 蒋明哲, 王秋实, 邢学奇, 杨虹, 黄峰, LEMMON P John, 缪平. 低成本液流电池储能技术研究[J]. 储能科学与技术, 2019, 8(S1): 60-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||