储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1946-1956.doi: 10.19799/j.cnki.2095-4239.2023.0088

• 储能测试与评价 • 上一篇    下一篇

基于NSGA-II遗传算法的锂电池均衡指标优化

刘宇龄1(), 孟锦豪1(), 彭乔1, 刘天琪1, 王扬2, 蔡永翔2   

  1. 1.四川大学电气工程学院,四川 成都 610065
    2.贵州电网有限责任公司电力科学研究院,贵州 贵阳 550002
  • 收稿日期:2023-02-21 修回日期:2023-03-05 出版日期:2023-06-05 发布日期:2023-06-21
  • 通讯作者: 孟锦豪 E-mail:llyl202207@163.com;jinhao@scu.edu.cn
  • 作者简介:刘宇龄(1998—),女,硕士研究生,研究方向为锂电池储能,E-mail:llyl202207@163.com
  • 基金资助:
    贵州省科技支撑计划(黔科合支撑[2022]一般012);国家自然科学基金项目(52107229);国家自然科学基金项目(52207218)

NSGA-II genetic algorithm-based optimization of the lithium battery equalization index

Yuling LIU1(), Jinhao MENG1(), Qiao PENG1, Tianqi LIU1, Yang WANG2, Yongxiang CAI2   

  1. 1.School of Electrical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
    2.Institute of Electric Power Science, Guizhou Power Grid Co. , Ltd, Guiyang 550002, Guizhou, China
  • Received:2023-02-21 Revised:2023-03-05 Online:2023-06-05 Published:2023-06-21
  • Contact: Jinhao MENG E-mail:llyl202207@163.com;jinhao@scu.edu.cn

摘要:

锂离子电池均衡系统主要用于解决电池组工作过程中出现的不一致现象,但现有研究在需要权衡多个均衡指标时,均衡阈值的选取缺乏理论基础。为解决该问题,本工作提出了基于非支配排序遗传算法(non-dominated sorting genetic algorithm-II,NSGA-II)对锂离子电池均衡系统的均衡指标进行优化的计算框架。首先,以均衡阈值(ΔV )作为问题参数,兼顾均衡速度、开关次数、荷电状态(state of charge,SOC)一致性最小作为多个均衡指标建立目标函数,并给出阈值与均衡指标关系式求解的方法,建立优化锂电池均衡指标的问题模型;然后,使用NSGA-II算法对多个均衡指标进行优化,并设计相应的决策策略;最后,在新欧洲驾驶循环(new European driving cycle,NEDC)工况和高速燃油经济性测试循环(highway fuel economy test,HWFET)工况下对所提算法的有效性进行验证。结果表明,电池组一致性、均衡速度相近的情况下,NEDC工况下最佳阈值ΔV =0.0232的开关频率是经验阈值ΔV =0.01的42%;同样,在HWFET工况下最优阈值ΔV =0.0156的开关频率是经验阈值ΔV =0.01的43.6%。本工作所提方法解决了以往均衡阈值难以确定的问题,使均衡系统的设计变得科学有效。

关键词: NSGA-II遗传算法, 多目标优化, 锂电池均衡, 均衡指标, 均衡阈值

Abstract:

Lithium-ion battery equalization systems are primarily used to address inconsistencies during battery pack operation. However, existing studies lack a theoretical basis for selecting the equalization threshold when considering multiple equalization metrics. To address this problem, the paper proposes a computational framework based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to optimize the equalization metrics of the Li-ion battery equalization system. First, the equalization threshold (ΔV ) is used as the problem parameter, and the equalization speed, the number of switching actions, and SOCconsistency are considered as multiple equalization indicators to establish the objective function. A method for determining the relationship between the threshold and equalization indicators is given to establish the problem model for optimizing Li-ion battery equalization indicators. Then, the NSGA-II algorithm is used to optimize the multiple equalization indicators and design the corresponding decision strategy. Finally, the effectiveness of the proposed algorithm is verified under New European Driving Cycle (NEDC) and Highway Fuel Economy Test (HWFET) conditions. The results show that the switching frequency of the optimal threshold ΔV = 0.0232 is 42% of the empirical threshold ΔV =0.01 for the NEDC condition, with similar battery pack consistency and equalization speed. Similarly, the switching frequency of the optimal threshold ΔV =0.0156 is 43.6% of the empirical threshold ΔV =0.01 for the HWFET condition. The proposed method in this paper addresses the challenge of determining the equalization threshold and enables a more scientific and effective design of equalization systems.

Key words: NSGA-II algorithm, multiobjective optimization, lithium battery equalizationequalization, equalization index, equalization thresholds

中图分类号: