Na3V2O2(PO4)2F(NVOPF) is a cathode material with potential application prospects in sodium-ion batteries. This is due to its suitably stable polyanion structure, high operating voltage, and high theoretical specific capacity. However, the intrinsic conductivity of the material is low, and it is prone to irregular agglomeration during the synthesis process, resulting in low actual specific capacity and unsatisfactory rate and cycling performances. Ion doping and micro/nanostructured materials have been found to benefit the intrinsic conductivity and stability of the material. This work, for the first time, reports the synthesis of Nb5+-doped NVOPF(NVNOPF, Na3V2-x Nb x O2(PO4)2F (0≤x≤0.15)) material with a hollow microspheric structure by the polyol-assisted hydrothermal method. The as-prepared NVOPF and NVNOPF materials were microspheres with sizes of 0.7-1.0 μm with hollow structures. The microspheres were found to be composed of nanoparticles of with sizes <100 nm. Nanoparticles shortened the diffusion distance between sodium ions, buffered the volume change caused by the intercalation/extraction of sodium ions, and improved the material cycling stability. Meanwhile, doping Nb5+ increased the lattice parameters of NVNOPF and enlarged the Na+ diffusion pathway. The solid-phase diffusion coefficient of Na+ in the material increased from 6.46×10-16 for Na3V2O2(PO4)2F to 3.52×10-15 cm2/s for Na3V1.90Nb0.10O2(PO4)2F. The discharge specific capacity of Na3V1.90Nb0.10O2(PO4)2F was 126.4 mAh/g (0.1 C rate) and 98.1 mAh/g (10 C rate). After 500 cycles of charge and discharge at the 10 C rate, the capacity retention was 95.2%, which is better than that of the undoped material (66.8%). The results showed that Nb-doped and hollow spherical micro-/nanostructures could effectively improve the electrochemical performance and cyclic stability of NVOPF.
Keywords:cathode material for sodium ion battery
;
Na3V2O2(PO4)2F
;
polyol assisted hydrothermal method
;
hollow microspheres
;
niobium doping
ZHANG Zinan. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381
本工作通过多元醇辅助水热法结合高温煅烧合成了由方形纳米颗粒组装而成的Na3V2-x Nb x O2(PO4)2F(0≤x≤0.15)(NVNOPF)空心微球。XRD精修结果证实了Nb在八面体V位的掺杂取代。Nb掺杂可以增加NVOPF的晶格参数,有利于提高钠离子的扩散速率。本工作还分别研究了NVOPF空心微球的形成对反应时间和多元醇的关联机制。与未掺杂的NVOPF相比,Nb掺杂的NVNOPF材料的比容量、倍率性能以及循环稳定性均明显优于未掺杂的对照样。
1 实验材料和方法
1.1 材料合成
采用水热法结合高温煅烧合成了掺杂不同含量Nb的Na3V2-x Nb x O2(PO4)2F(x = 0、0.05、0.10、0.15)材料,合成过程如图1所示。将(2-x) mmol NH4VO3、0.5x mmol Nb2O5和1 mL H2O2加入到10 mL去离子水中,搅拌30 min,得到混合溶液。然后,将2 mmol NaH2PO4和1 mmol NaF依次加入上述溶液中,在室温继续搅拌30 min至NaH2PO4和NaF完全溶解。再加入30 mL聚乙二醇(PEG200),持续搅拌1 h。将上述溶液转移到50 mL内衬聚四氟乙烯的水热反应釜中,置于180 ℃烘箱中加热24 h。将获得的样品用去离子水和酒精洗涤、离心分离,共6次,然后在100 ℃下真空干燥12 h。最后,将干燥的样品在氩气气氛中,以5 ℃/min速率升温至400 ℃,煅烧3 h。所得样品为Na3V2O2(PO4)2F(NVOPF)、Na3V1.95Nb0.05O2(PO4)2F(NVNOPF-0.05)、Na3V1.90Nb0.10O2(PO4)2F(NVNOPF-0.10)和Na3V1.85Nb0.15O2(PO4)2F(NVNOPF-0.15)。
将所合成的Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)材料、乙炔黑和聚偏二氟乙烯以质量比70∶20∶10在N-甲基吡咯烷酮(NMP)溶液中充分研磨混合。将制好的浆料用刮刀均匀地涂覆在碳箔表面,于75 ℃鼓风烘箱中干燥3 h后,转入100 ℃真空干燥箱中过夜干燥。将干燥后的极片裁成直径10 mm的圆片备用,其中活性材料的负载量约为1.0~2.0 mg/cm2。
采用Versa STAT 4仪器,以0.10 mV/s的扫描速率在2.00~4.30 V(vs. Na+/Na)的范围内,进行循环伏安(CV)测试。
1.3.4 交流阻抗测试
采用Versa STAT 4仪器测试电池的电化学交流阻抗(EIS)。频率范围为0.01 Hz~100.00 kHz,振幅为5.00 mV。使用Zview软件对EIS谱图进行拟合分析。
2 结果与讨论
2.1 材料结构分析
图2(a)和(b)是Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)的XRD谱图。从图2(a)可以看出,Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)的XRD衍射谱图基本一致,所有强衍射峰都与具有NASICON结构的I4/mmm空间群[35](PDF#97-041-1950)相对应。表明本工作所选择的Nb5+掺杂量未明显改变NVOPF的晶体结构。从图2(b)中可以看到,随着材料中Nb5+含量的增加,(200)、(103)和(202)峰向低角度移动。这意味着Nb掺杂NVNOPF具有较未掺杂NVOPF更大的晶格常数[30]。
图2
(a) Na3V2-x Nb x O2(PO4)2F(x = 0、0.05、0.10、0.15)的XRD图;(b) 局部放大图
Fig. 2
(a) XRD pattern of Na3V2-x Nb x O2(PO4)2F(x = 0, 0.05, 0.10, 0.15); (b) partial enlarged image
图3(a)~(d)是利用Fullprof软件对Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)XRD谱图的精修图。可靠性因子Rp和Rwp的值均低于10%,表明精修是可以接受的。XRD精修计算得到相应的晶格参数列于表1。表1数据显示,随着NVNOPF材料中Nb掺杂量的增加,a值和c值以及晶胞体积逐渐增大。这主要是由于Nb5+的半径0.64 Å大于V4+(0.59 Å),Nb掺杂后NVNOPF的晶胞参数增加[36]。表1中原子占位信息表明Nb占据了部分V位点。以上结果表明Nb5+成功掺杂到NVOPF的晶格中。图4(a)是NVOPF的晶体结构示意图。NVOPF由VO5F八面体和PO4四面体构成,它们沿c轴方向共享一个F原子[33]。通过这种框架连接,间隙通道沿a轴和b轴延伸,间隙空间中的Na+无序排列间隔很近。这种相对较大的隧道结构有利于Na+迁移[37]。图4(b)是Nb取代V位置的示意图。Nb掺杂的NVOPF晶体结构中形成了NbO5F八面体[38]。掺杂后晶胞参数明显增加,有利于Na+的扩散传输和NVOPF电化学性能的改善[25]。
本工作通过多元醇辅助水热法成功制备了性能优异的Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)空心微球正极材料。研究发现,Nb掺杂Na3V2O2(PO4)2F材料的电化学性能显著提升。Nb的摩尔比为0.10的NVNOPF-0.10材料粒径为0.7~1.0 μm,壳厚度约为180 nm,空心微球均匀分散、具有优异的倍率性能和循环稳定性。NVNOPF-0.10材料以10 C倍率放电的初始比容量为98.1 mAh/g,循环500周后,容量保持率为95.2%。研究结果还显示,Nb掺杂后材料的电荷转移电阻明显降低,钠离子的固相扩散系数增大。合成的NVNOPF-0.05、NVNOPF-0.10和NVNOPF-0.15材料的倍率性能和循环稳定性均优于未掺杂NVOPF材料。
MAO Z F, WANG R, HE B B, et al. Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors[J]. Small, 2019, 15(36): doi: 10.1002/smll.201902466.
XIAO J, LI X, TANG K K, et al. Recent progress of emerging cathode materials for sodium ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(10): 3735-3764.
BAI Q A, YANG L F, CHEN H L, et al. Computational studies of electrode materials in sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702998.
YAN R B, ZHAN G H, LIAO W H, et al. Uniform Na3V2(PO4)2O2F microcubes enhanced by ionic liquid-modified multi-walled carbon nanotubes as a superior cathode for sodium-ion batteries[J]. Electrochimica Acta, 2023, 439: doi: 10.1016/j.electacta.2022. 141671.
JIN H Y, LIU M, UCHAKER E, et al. Nanoporous carbon leading to the high performance of a Na3V2O2(PO4)2F@carbon/graphene cathode in a sodium ion battery[J]. CrystEngComm, 2017, 19(30): 4287-4293.
YIN Y M, PEI C Y, LIAO X B, et al. Revealing the multi-electron reaction mechanism of Na3V2O2 (PO4)2F towards improved lithium storage[J]. ChemSusChem, 2021, 14(14): 2984-2991.
LI X Y, JIANG S L, LI S Y, et al. Overcoming the rate-determining kinetics of the Na3V2O2(PO4)2F cathode for ultrafast sodium storage by heterostructured dual-carbon decoration[J]. Journal of Materials Chemistry A, 2021, 9(19): 11827-11838.
ZHANG L L, LIU J, WEI C, et al. N/P-dual-doped carbon-coated Na3V2(PO4)2O2F microspheres as a high-performance cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3670-3680.
LEE J, PARK S, PARK Y, et al. Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries[J]. Chemical Engineering Journal, 2021, 422: doi: 10.1016/j.cej.2021. 130052.
DU P, MI K, HU F D, et al. Mn-doped hollow Na3V2O2(PO4)2F as a high performance cathode material for sodium ion batteries[J]. European Journal of Inorganic Chemistry, 2021, 2021(13): 1256-1262.
LI H X, JIN T, CHEN X B, et al. Rational architecture design enables superior Na storage in greener NASICON-Na4 MnV(PO4)3 cathode[J]. Advanced Energy Materials, 2018, 8(24): doi: 10.1002/aenm.201801418.
WANG S T, ZHAO L J, DONG Y H, et al. Pre-zeolite framework super-MIEC anodes for high-rate lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(1): 241-251.
FANG Y J, YU X Y, LOU X W D. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres[J]. Angewandte Chemie International Edition, 2017, 56(21): 5801-5805.
QI Y R, MU L Q, ZHAO J M, et al. pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(19): 7178-7184.
QI Y R, TONG Z Z, ZHAO J M, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018, 2(11): 2348-2363.
GUO F F, FAN M H, JIN P P, et al. Precursor-mediated synthesis of double-shelled V2O5 hollow nanospheres as cathode material for lithium-ion batteries[J]. CrystEngComm, 2016, 18(22): 4068-4073.
LIN B, LI Q F, LIU B D, et al. Biochemistry-directed hollow porous microspheres: Bottom-up self-assembled polyanion-based cathodes for sodium ion batteries[J]. Nanoscale, 2016, 8(15): 8178-8188.
LI Y, CHEN M H, LIU B, et al. Heteroatom doping: An effective way to boost sodium ion storage[J]. Advanced Energy Materials, 2020, 10(27): doi: 10.1002/aenm.202000927.
SUN X F, WANG Z K, HU Q D, et al. Oxygen-tuned Na3V2(PO4)2F3-2yO2y (0<y<1) as high-rate cathode materials for rechargeable sodium batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15799-15808.
HE J R, TAO T, YANG F, et al. Optimizing the electrolyte systems for Na3(VO1-xPO4)2F1+2x (0≤x≤1) cathode and understanding their interfacial chemistries towards high-rate sodium-ion batteries[J]. ChemSusChem, 2022, 15(8): doi: 10.1002/cssc.202200480.
ZHAO X X, GU Z Y, GUO J Z, et al. Dual anionic substitution engineering for an advanced NASICON phosphate cathode in sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(15): 5671-5678.
GU Z Y, GUO J Z, SUN Z H, et al. Air/water/temperature-stable cathode for all-climate sodium-ion batteries[J]. Cell Reports Physical Science, 2021, 2(12): doi: 10.1016/j.xcrp.2021.100665.
ZHANG Y, GUO S R, XU H Y. Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4525-4534.
LI X, HUANG Y Y, WANG J S, et al. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery[J]. Journal of Materials Chemistry A, 2018, 6(4): 1390-1396.
LIU X H, FENG G L, WU Z G, et al. Enhanced sodium storage property of sodium vanadium phosphate via simultaneous carbon coating and Nb5+ doping[J]. Chemical Engineering Journal, 2020, 386: doi: 10.1016/j.cej.2019.123953.
ZHANG Y Z, CHEN L, MENG Y, et al. Sodium storage in fluorine-rich mesoporous carbon fabricated by low-temperature carbonization of polyvinylidene fluoride with a silica template[J]. RSC Advances, 2016, 6(112): 110850-110857.
WANG H M, WANG H X, CHEN Y, et al. Phosphorus-doped graphene and (8, 0) carbon nanotube: Structural, electronic, magnetic properties, and chemical reactivity[J]. Applied Surface Science, 2013, 273: 302-309.
MASSA W, YAKUBOVICH O V, DIMITROVA O V. Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F[PO4]2}[J]. Solid State Sciences, 2002, 4(4): 495-501.
LI Z F, LUO C Y, WANG C X, et al. Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2811-2820.
NIU Y B, ZHANG Y, XU M W. A review on pyrophosphate framework cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(25): 15006-15025.
YOO C Y, HONG K P, KIM S J. A new layered perovskite, KSrNb2O6F, by powder neutron diffraction[J]. Acta Crystallographica Section C Crystal Structure Communications, 2007, 63(8): doi: 10.1107/s0108270107029563.
LING M X, LI F, YI H M, et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(47): 24201-24209.
GUO J Z, WANG P F, WU X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance[J]. Advanced Materials, 2017, 29(33): doi: 10.1002/adma.201701968.
YANG H, WU X L, CAO M H, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2009, 113(8): 3345-3351.
XIAO Y H, LIU S J, LI F, et al. 3D hierarchical Co3O4 Twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors[J]. Advanced Functional Materials, 2012, 22(19): 4052-4059.
CHEN J, WANG T, CHEN C, et al. Heteroatom doping hollow vanadium oxide/carbon composites as universal anode materials for efficient alkali-metal ion storage[J]. Carbon, 2022, 192: 30-40.
KIM D H, KIM J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties[J]. Electrochemical and Solid-State Letters, 2006, 9(9): doi: 10.1149/1.2218308.
ARAGÓN M J, GUTIÉRREZ J, KLEE R, et al. On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 784: 47-54.
ZHU Q, WANG M, NAN B, et al. Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries[J]. Journal of Power Sources, 2017, 362: 147-159.
ZHAO L N, ZHAO H L, DU Z H, et al. Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: Understanding the role of calcium substitution for vanadium[J]. Journal of Materials Chemistry A, 2019, 7(16): 9807-9814.
CHENG Q S, LIANG J W, LIN N, et al. Porous TiNb2O7 nanospheres as ultra long-life and high-power anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 176: 456-462.
ZHAO X X, GU Z Y, LI W H, et al. Temperature-dependent electrochemical properties and electrode kinetics of Na3V2(PO4)2O2F cathode for sodium-ion batteries with high energy density[J]. Chemistry-A European Journal, 2020, 26(35): 7823-7830.
YAN L T, CHEN G, SARKER S, et al. Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22213-22219.
KRETSCHMER K, SUN B, ZHANG J Q, et al. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@Carbon paper cathode for sodium-ion batteries[J]. Small, 2017, 13(9): doi: 10.1002/smll.201603318.
WANG X Y, HAO H, LIU J L, et al. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(11): 4065-4069.
LI S J, GE P, ZHANG C Y, et al. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode[J]. Journal of Power Sources, 2017, 366: 249-258.
ZHANG D X, WANG J, DONG K Z, et al. First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO4[J]. Computational Materials Science, 2018, 155: 410-415.
LI X T, SHAO Z B, LIU K R, et al. Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling-based method[J]. Journal of Solid State Electrochemistry, 2019, 23(2): 465-473.
CHEN B F, PENG Z B, YUAN Z Y. Constructing sandwich structure of Nb-substituted Na3V2(PO4)3/C nanoparticles enwrapped on three-dimensional graphene with superior sodium storage property[J]. Ceramics International, 2022, 48(22): 33957-33966.
BI L N, LIU X Q, LI X Y, et al. Modulation of the crystal structure and ultralong life span of a Na3V2(PO4)3-based cathode for a high-performance sodium-ion battery by niobium-vanadium substitution[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21039-21046.
... 图3(a)~(d)是利用Fullprof软件对Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)XRD谱图的精修图.可靠性因子Rp和Rwp的值均低于10%,表明精修是可以接受的.XRD精修计算得到相应的晶格参数列于表1.表1数据显示,随着NVNOPF材料中Nb掺杂量的增加,a值和c值以及晶胞体积逐渐增大.这主要是由于Nb5+的半径0.64 Å大于V4+(0.59 Å),Nb掺杂后NVNOPF的晶胞参数增加[36].表1中原子占位信息表明Nb占据了部分V位点.以上结果表明Nb5+成功掺杂到NVOPF的晶格中.图4(a)是NVOPF的晶体结构示意图.NVOPF由VO5F八面体和PO4四面体构成,它们沿c轴方向共享一个F原子[33].通过这种框架连接,间隙通道沿a轴和b轴延伸,间隙空间中的Na+无序排列间隔很近.这种相对较大的隧道结构有利于Na+迁移[37].图4(b)是Nb取代V位置的示意图.Nb掺杂的NVOPF晶体结构中形成了NbO5F八面体[38].掺杂后晶胞参数明显增加,有利于Na+的扩散传输和NVOPF电化学性能的改善[25]. ...
... 图2(a)和(b)是Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)的XRD谱图.从图2(a)可以看出,Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)的XRD衍射谱图基本一致,所有强衍射峰都与具有NASICON结构的I4/mmm空间群[35](PDF#97-041-1950)相对应.表明本工作所选择的Nb5+掺杂量未明显改变NVOPF的晶体结构.从图2(b)中可以看到,随着材料中Nb5+含量的增加,(200)、(103)和(202)峰向低角度移动.这意味着Nb掺杂NVNOPF具有较未掺杂NVOPF更大的晶格常数[30]. ...
... 图3(a)~(d)是利用Fullprof软件对Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)XRD谱图的精修图.可靠性因子Rp和Rwp的值均低于10%,表明精修是可以接受的.XRD精修计算得到相应的晶格参数列于表1.表1数据显示,随着NVNOPF材料中Nb掺杂量的增加,a值和c值以及晶胞体积逐渐增大.这主要是由于Nb5+的半径0.64 Å大于V4+(0.59 Å),Nb掺杂后NVNOPF的晶胞参数增加[36].表1中原子占位信息表明Nb占据了部分V位点.以上结果表明Nb5+成功掺杂到NVOPF的晶格中.图4(a)是NVOPF的晶体结构示意图.NVOPF由VO5F八面体和PO4四面体构成,它们沿c轴方向共享一个F原子[33].通过这种框架连接,间隙通道沿a轴和b轴延伸,间隙空间中的Na+无序排列间隔很近.这种相对较大的隧道结构有利于Na+迁移[37].图4(b)是Nb取代V位置的示意图.Nb掺杂的NVOPF晶体结构中形成了NbO5F八面体[38].掺杂后晶胞参数明显增加,有利于Na+的扩散传输和NVOPF电化学性能的改善[25]. ...
... 图2(a)和(b)是Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)的XRD谱图.从图2(a)可以看出,Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)的XRD衍射谱图基本一致,所有强衍射峰都与具有NASICON结构的I4/mmm空间群[35](PDF#97-041-1950)相对应.表明本工作所选择的Nb5+掺杂量未明显改变NVOPF的晶体结构.从图2(b)中可以看到,随着材料中Nb5+含量的增加,(200)、(103)和(202)峰向低角度移动.这意味着Nb掺杂NVNOPF具有较未掺杂NVOPF更大的晶格常数[30]. ...
1
... 图3(a)~(d)是利用Fullprof软件对Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)XRD谱图的精修图.可靠性因子Rp和Rwp的值均低于10%,表明精修是可以接受的.XRD精修计算得到相应的晶格参数列于表1.表1数据显示,随着NVNOPF材料中Nb掺杂量的增加,a值和c值以及晶胞体积逐渐增大.这主要是由于Nb5+的半径0.64 Å大于V4+(0.59 Å),Nb掺杂后NVNOPF的晶胞参数增加[36].表1中原子占位信息表明Nb占据了部分V位点.以上结果表明Nb5+成功掺杂到NVOPF的晶格中.图4(a)是NVOPF的晶体结构示意图.NVOPF由VO5F八面体和PO4四面体构成,它们沿c轴方向共享一个F原子[33].通过这种框架连接,间隙通道沿a轴和b轴延伸,间隙空间中的Na+无序排列间隔很近.这种相对较大的隧道结构有利于Na+迁移[37].图4(b)是Nb取代V位置的示意图.Nb掺杂的NVOPF晶体结构中形成了NbO5F八面体[38].掺杂后晶胞参数明显增加,有利于Na+的扩散传输和NVOPF电化学性能的改善[25]. ...
1
... 图3(a)~(d)是利用Fullprof软件对Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)XRD谱图的精修图.可靠性因子Rp和Rwp的值均低于10%,表明精修是可以接受的.XRD精修计算得到相应的晶格参数列于表1.表1数据显示,随着NVNOPF材料中Nb掺杂量的增加,a值和c值以及晶胞体积逐渐增大.这主要是由于Nb5+的半径0.64 Å大于V4+(0.59 Å),Nb掺杂后NVNOPF的晶胞参数增加[36].表1中原子占位信息表明Nb占据了部分V位点.以上结果表明Nb5+成功掺杂到NVOPF的晶格中.图4(a)是NVOPF的晶体结构示意图.NVOPF由VO5F八面体和PO4四面体构成,它们沿c轴方向共享一个F原子[33].通过这种框架连接,间隙通道沿a轴和b轴延伸,间隙空间中的Na+无序排列间隔很近.这种相对较大的隧道结构有利于Na+迁移[37].图4(b)是Nb取代V位置的示意图.Nb掺杂的NVOPF晶体结构中形成了NbO5F八面体[38].掺杂后晶胞参数明显增加,有利于Na+的扩散传输和NVOPF电化学性能的改善[25]. ...
1
... 图3(a)~(d)是利用Fullprof软件对Na3V2-x Nb x O2(PO4)2F(x=0、0.05、0.10、0.15)XRD谱图的精修图.可靠性因子Rp和Rwp的值均低于10%,表明精修是可以接受的.XRD精修计算得到相应的晶格参数列于表1.表1数据显示,随着NVNOPF材料中Nb掺杂量的增加,a值和c值以及晶胞体积逐渐增大.这主要是由于Nb5+的半径0.64 Å大于V4+(0.59 Å),Nb掺杂后NVNOPF的晶胞参数增加[36].表1中原子占位信息表明Nb占据了部分V位点.以上结果表明Nb5+成功掺杂到NVOPF的晶格中.图4(a)是NVOPF的晶体结构示意图.NVOPF由VO5F八面体和PO4四面体构成,它们沿c轴方向共享一个F原子[33].通过这种框架连接,间隙通道沿a轴和b轴延伸,间隙空间中的Na+无序排列间隔很近.这种相对较大的隧道结构有利于Na+迁移[37].图4(b)是Nb取代V位置的示意图.Nb掺杂的NVOPF晶体结构中形成了NbO5F八面体[38].掺杂后晶胞参数明显增加,有利于Na+的扩散传输和NVOPF电化学性能的改善[25]. ...