储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2370-2381.doi: 10.19799/j.cnki.2095-4239.2023.0177
收稿日期:
2023-03-27
修回日期:
2023-04-08
出版日期:
2023-08-05
发布日期:
2023-08-23
通讯作者:
陈剑
E-mail:zinan@dicp.ac.cn;chenjian@dicp.ac.cn
作者简介:
张梓楠(1998—),女,硕士研究生,研究方向为钠离子电池正极材料,E-mail:zinan@dicp.ac.cn;
基金资助:
Zinan ZHANG1,2(), Jian CHEN1()
Received:
2023-03-27
Revised:
2023-04-08
Online:
2023-08-05
Published:
2023-08-23
Contact:
Jian CHEN
E-mail:zinan@dicp.ac.cn;chenjian@dicp.ac.cn
摘要:
Na3V2O2(PO4)2F(NVOPF)具有较稳定的聚阴离子结构、较高的工作电压和理论比能量,是一种具有良好应用前景的钠离子电池正极材料。但该材料在合成过程中易发生不规则团聚,且本征电导率低,导致材料的实际比容量较小,倍率性能和循环性能有待提高。通过离子掺杂以及合成具有微纳结构的材料可以有效提高这类材料的结构稳定性和电导率。本工作首次报道了多元醇辅助水热法合成具有空心微球结构的Nb5+掺杂NVOPF[NVNOPF,Na3V2-x Nb x O2(PO4)2F(0≤x≤0.15)]材料。所制备的NVOPF和NVNOPF是尺寸为0.7~1.0 μm的具有中空结构的微球。可以发现微球由尺寸小于100 nm的纳米颗粒组成。纳米颗粒缩短钠离子的扩散距离,并且缓冲了由于钠离子的嵌入/脱出所导致的体积变化,提高了材料的循环稳定性。同时,掺杂Nb5+增大了NVOPF的晶格参数,增大了Na+扩散通道,将Na+在NVOPF中的固相扩散系数由Na3V2O2(PO4)2F的6.46×10-16 cm2/s提高至Na3V1.90Nb0.10O2(PO4)2F的3.52×10-15 cm2/s。Na3V1.90Nb0.10O2(PO4)2F材料以0.1 C倍率放电,首次放电比容量达126.4 mAh/g;以10 C倍率放电,初始比容量为98.1 mAh/g,500周循环后的容量保持率为95.2%,明显优于未掺杂材料的66.8%。研究结果显示掺杂Nb5+的空心球形微纳结构有效提高了NVOPF材料的电化学性能和循环稳定性。
中图分类号:
张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381.
Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381.
表1
NVOPF、NVNOPF-0.05、NVNOPF-0.10和NVNOPF-0.15的晶格参数"
样品 | a=b/Å | c/Å | V/Å3 | Occ.(Na 1) | Occ.(Na 2) | Occ.(V) | Occ.(Nb) |
---|---|---|---|---|---|---|---|
NVOPF | 6.36958 | 10.60727 | 430.353 | 0.380 | 0.190 | 1.000 | 0 |
NVNOPF-0.05 | 6.37247 | 10.61682 | 431.132 | 0.380 | 0.190 | 0.975 | 0.025 |
NVNOPF-0.10 | 6.38463 | 10.62043 | 432.926 | 0.380 | 0.190 | 0.950 | 0.050 |
NVNOPF-0.15 | 6.38841 | 10.62859 | 433.772 | 0.380 | 0.190 | 0.925 | 0.075 |
1 | OBAMA B. The irreversible momentum of clean energy[J]. Science, 2017, 355(6321): 126-129. |
2 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
3 | CRABTREE G. Perspective: The energy-storage revolution[J]. Nature, 2015, 526(7575): doi: 10.1038/526S92a. |
4 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
5 | LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): doi: 10.1002/adma.200903328. |
6 | GUPTA P, PUSHPAKANTH S, HAIDER M A, et al. Understanding the design of cathode materials for Na-ion batteries[J]. ACS Omega, 2022, 7(7): 5605-5614. |
7 | MAO Z F, WANG R, HE B B, et al. Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors[J]. Small, 2019, 15(36): doi: 10.1002/smll.201902466. |
8 | XIAO J, LI X, TANG K K, et al. Recent progress of emerging cathode materials for sodium ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(10): 3735-3764. |
9 | BAI Q A, YANG L F, CHEN H L, et al. Computational studies of electrode materials in sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702998. |
10 | YAN R B, ZHAN G H, LIAO W H, et al. Uniform Na3V2(PO4)2O2F microcubes enhanced by ionic liquid-modified multi-walled carbon nanotubes as a superior cathode for sodium-ion batteries[J]. Electrochimica Acta, 2023, 439: doi: 10.1016/j.electacta.2022. 141671. |
11 | JIN H Y, LIU M, UCHAKER E, et al. Nanoporous carbon leading to the high performance of a Na3V2O2(PO4)2F@carbon/graphene cathode in a sodium ion battery[J]. CrystEngComm, 2017, 19(30): 4287-4293. |
12 | YIN Y M, PEI C Y, LIAO X B, et al. Revealing the multi-electron reaction mechanism of Na3V2O2 (PO4)2F towards improved lithium storage[J]. ChemSusChem, 2021, 14(14): 2984-2991. |
13 | LI X Y, JIANG S L, LI S Y, et al. Overcoming the rate-determining kinetics of the Na3V2O2(PO4)2F cathode for ultrafast sodium storage by heterostructured dual-carbon decoration[J]. Journal of Materials Chemistry A, 2021, 9(19): 11827-11838. |
14 | ZHANG L L, LIU J, WEI C, et al. N/P-dual-doped carbon-coated Na3V2(PO4)2O2F microspheres as a high-performance cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3670-3680. |
15 | LEE J, PARK S, PARK Y, et al. Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries[J]. Chemical Engineering Journal, 2021, 422: doi: 10.1016/j.cej.2021. 130052. |
16 | DU P, MI K, HU F D, et al. Mn-doped hollow Na3V2O2(PO4)2F as a high performance cathode material for sodium ion batteries[J]. European Journal of Inorganic Chemistry, 2021, 2021(13): 1256-1262. |
17 | LI H X, JIN T, CHEN X B, et al. Rational architecture design enables superior Na storage in greener NASICON-Na4 MnV(PO4)3 cathode[J]. Advanced Energy Materials, 2018, 8(24): doi: 10.1002/aenm.201801418. |
18 | WANG S T, ZHAO L J, DONG Y H, et al. Pre-zeolite framework super-MIEC anodes for high-rate lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(1): 241-251. |
19 | FANG Y J, YU X Y, LOU X W D. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres[J]. Angewandte Chemie International Edition, 2017, 56(21): 5801-5805. |
20 | QI Y R, MU L Q, ZHAO J M, et al. pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(19): 7178-7184. |
21 | QI Y R, TONG Z Z, ZHAO J M, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018, 2(11): 2348-2363. |
22 | GUO F F, FAN M H, JIN P P, et al. Precursor-mediated synthesis of double-shelled V2O5 hollow nanospheres as cathode material for lithium-ion batteries[J]. CrystEngComm, 2016, 18(22): 4068-4073. |
23 | LIN B, LI Q F, LIU B D, et al. Biochemistry-directed hollow porous microspheres: Bottom-up self-assembled polyanion-based cathodes for sodium ion batteries[J]. Nanoscale, 2016, 8(15): 8178-8188. |
24 | LI Y, CHEN M H, LIU B, et al. Heteroatom doping: An effective way to boost sodium ion storage[J]. Advanced Energy Materials, 2020, 10(27): doi: 10.1002/aenm.202000927. |
25 | SUN X F, WANG Z K, HU Q D, et al. Oxygen-tuned Na3V2(PO4)2F3-2 yO2 y (0<y<1) as high-rate cathode materials for rechargeable sodium batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15799-15808. |
26 | HE J R, TAO T, YANG F, et al. Optimizing the electrolyte systems for Na3(VO1- xPO4)2F1+2 x (0≤x≤1) cathode and understanding their interfacial chemistries towards high-rate sodium-ion batteries[J]. ChemSusChem, 2022, 15(8): doi: 10.1002/cssc.202200480. |
27 | ZHAO X X, GU Z Y, GUO J Z, et al. Dual anionic substitution engineering for an advanced NASICON phosphate cathode in sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(15): 5671-5678. |
28 | GU Z Y, GUO J Z, SUN Z H, et al. Air/water/temperature-stable cathode for all-climate sodium-ion batteries[J]. Cell Reports Physical Science, 2021, 2(12): doi: 10.1016/j.xcrp.2021.100665. |
29 | ZHANG Y, GUO S R, XU H Y. Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4525-4534. |
30 | LI X, HUANG Y Y, WANG J S, et al. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery[J]. Journal of Materials Chemistry A, 2018, 6(4): 1390-1396. |
31 | LIU X H, FENG G L, WU Z G, et al. Enhanced sodium storage property of sodium vanadium phosphate via simultaneous carbon coating and Nb5+ doping[J]. Chemical Engineering Journal, 2020, 386: doi: 10.1016/j.cej.2019.123953. |
32 | YUN Y S, JIN H J. Sulfur-doped, reduced graphene oxide nanoribbons for sodium-ion batteries[J]. Materials Letters, 2017, 198: 106-109. |
33 | ZHANG Y Z, CHEN L, MENG Y, et al. Sodium storage in fluorine-rich mesoporous carbon fabricated by low-temperature carbonization of polyvinylidene fluoride with a silica template[J]. RSC Advances, 2016, 6(112): 110850-110857. |
34 | WANG H M, WANG H X, CHEN Y, et al. Phosphorus-doped graphene and (8, 0) carbon nanotube: Structural, electronic, magnetic properties, and chemical reactivity[J]. Applied Surface Science, 2013, 273: 302-309. |
35 | MASSA W, YAKUBOVICH O V, DIMITROVA O V. Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F[PO4]2}[J]. Solid State Sciences, 2002, 4(4): 495-501. |
36 | LI Z F, LUO C Y, WANG C X, et al. Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2811-2820. |
37 | NIU Y B, ZHANG Y, XU M W. A review on pyrophosphate framework cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(25): 15006-15025. |
38 | YOO C Y, HONG K P, KIM S J. A new layered perovskite, KSrNb2O6F, by powder neutron diffraction[J]. Acta Crystallographica Section C Crystal Structure Communications, 2007, 63(8): doi: 10.1107/s0108270107029563. |
39 | LING M X, LI F, YI H M, et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(47): 24201-24209. |
40 | GUO J Z, WANG P F, WU X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance[J]. Advanced Materials, 2017, 29(33): doi: 10.1002/adma.201701968. |
41 | YANG H, WU X L, CAO M H, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2009, 113(8): 3345-3351. |
42 | XIAO Y H, LIU S J, LI F, et al. 3D hierarchical Co3O4 Twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors[J]. Advanced Functional Materials, 2012, 22(19): 4052-4059. |
43 | CHEN J, WANG T, CHEN C, et al. Heteroatom doping hollow vanadium oxide/carbon composites as universal anode materials for efficient alkali-metal ion storage[J]. Carbon, 2022, 192: 30-40. |
44 | KIM D H, KIM J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties[J]. Electrochemical and Solid-State Letters, 2006, 9(9): doi: 10.1149/1.2218308. |
45 | ARAGÓN M J, GUTIÉRREZ J, KLEE R, et al. On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 784: 47-54. |
46 | ZHU Q, WANG M, NAN B, et al. Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries[J]. Journal of Power Sources, 2017, 362: 147-159. |
47 | ZHAO L N, ZHAO H L, DU Z H, et al. Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: Understanding the role of calcium substitution for vanadium[J]. Journal of Materials Chemistry A, 2019, 7(16): 9807-9814. |
48 | CHENG Q S, LIANG J W, LIN N, et al. Porous TiNb2O7 nanospheres as ultra long-life and high-power anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 176: 456-462. |
49 | ZHAO X X, GU Z Y, LI W H, et al. Temperature-dependent electrochemical properties and electrode kinetics of Na3V2(PO4)2O2F cathode for sodium-ion batteries with high energy density[J]. Chemistry-A European Journal, 2020, 26(35): 7823-7830. |
50 | YAN L T, CHEN G, SARKER S, et al. Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22213-22219. |
51 | KRETSCHMER K, SUN B, ZHANG J Q, et al. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@Carbon paper cathode for sodium-ion batteries[J]. Small, 2017, 13(9): doi: 10.1002/smll.201603318. |
52 | WANG X Y, HAO H, LIU J L, et al. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(11): 4065-4069. |
53 | LI S J, GE P, ZHANG C Y, et al. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode[J]. Journal of Power Sources, 2017, 366: 249-258. |
54 | ZHANG D X, WANG J, DONG K Z, et al. First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO4[J]. Computational Materials Science, 2018, 155: 410-415. |
55 | LI X T, SHAO Z B, LIU K R, et al. Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling-based method[J]. Journal of Solid State Electrochemistry, 2019, 23(2): 465-473. |
56 | KOYAMA C, NOZAWA J, MAEDA K, et al. Investigation of defect structure of impurity-doped lithium niobate by combining thermodynamic constraints with lattice constant variations[J]. Journal of Applied Physics, 2015, 117(1): doi: 10.1063/1.4905286. |
57 | CHEN B F, PENG Z B, YUAN Z Y. Constructing sandwich structure of Nb-substituted Na3V2(PO4)3/C nanoparticles enwrapped on three-dimensional graphene with superior sodium storage property[J]. Ceramics International, 2022, 48(22): 33957-33966. |
58 | BI L N, LIU X Q, LI X Y, et al. Modulation of the crystal structure and ultralong life span of a Na3V2(PO4)3-based cathode for a high-performance sodium-ion battery by niobium-vanadium substitution[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21039-21046. |
[1] | 张慎然, 徐立环, 苏畅. 不同碳含量对SiO/C负极电化学性能的影响[J]. 储能科学与技术, 2023, 12(6): 1784-1793. |
[2] | 边煜华, 刘朝孟, 高宣雯, 李健国, 王达, 李尚倬, 骆文彬. 醚基电解液中CoS2/NC作为钠离子电池高性能阳极的原因分析[J]. 储能科学与技术, 2023, 12(5): 1500-1509. |
[3] | 韩文哲, 赖青松, 高宣雯, 骆文彬. 钾离子电池锰基层状氧化物正极的研究进展[J]. 储能科学与技术, 2023, 12(5): 1364-1379. |
[4] | 李社栋, 宋莹莹, 边煜华, 刘朝孟, 高宣雯, 骆文彬. 室温钠硫电池的发展现状和挑战[J]. 储能科学与技术, 2023, 12(5): 1315-1331. |
[5] | 刘树港, 蒙波, 李政隆, 杨亚雄, 陈建. Li x (Mg, Ni, Zn, Cu, Co) 1-x O高熵氧化物负极材料电化学储锂特性[J]. 储能科学与技术, 2023, 12(3): 743-753. |
[6] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
[7] | 滕久康, 吴宁宁, 王畅, 王庆杰, 石斌. 高容量铬氧化物Cr8O21 锂一次电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(11): 3455-3462. |
[8] | 王鲁, 王峰, 徐竞, 赵延鹏, 李玮, 王艳艳, 王应彪. 基于SOM+SVM的退役锂离子电池分选[J]. 储能科学与技术, 2022, 11(11): 3623-3630. |
[9] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[10] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[11] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[12] | 陈博文, 崔瑞广, 沈炎宾, 陈立桅. 杨氏模量微观表征新方法在锂电池中的应用[J]. 储能科学与技术, 2022, 11(3): 991-999. |
[13] | 陈珂君, 范利君. 钴掺杂FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2023, (): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||