储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3056-3063.doi: 10.19799/j.cnki.2095-4239.2023.0391

• 储能材料与器件 • 上一篇    下一篇

钴掺杂FeS2 的可控制备及储钠特性研究

陈珂君1(), 范利君2   

  1. 1.新乡学院,河南 新乡 453000
    2.鹤壁能源化工职业学院,河南 鹤壁 458000
  • 收稿日期:2023-06-06 修回日期:2023-06-25 出版日期:2023-10-05 发布日期:2023-10-09
  • 通讯作者: 陈珂君 E-mail:chenkejunckj@126.com
  • 作者简介:陈珂君(1988—),女,硕士,讲师,研究方向为功能纳米材料,E-mail:chenkejunckj@126.com

Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances

Kejun CHEN1(), Lijun FAN2   

  1. 1.Xinxiang University, Xinxiang 453000, Henan, China
    2.Hebi Vocational College of Energy and Chemistry, Hebi 458000, Henan, China
  • Received:2023-06-06 Revised:2023-06-25 Online:2023-10-05 Published:2023-10-09
  • Contact: Kejun CHEN E-mail:chenkejunckj@126.com

摘要:

铁基硫化物作为典型的转化型负极材料,具有理论比容量高、无毒、资源丰富等优势,成为了钠离子电池潜在的负极材料之一。然而,该类材料的电子/离子输运性能较差,导致了储钠动力学特性有待改善,这也限制了其实际应用。基于此,本文以典型铁硫化物FeS2为例,提出阳离子掺杂的策略来调控其晶体结构,以期改善其电化学储钠特性。研究发现,通过在前驱体溶液中引入Co2+,实现了钴掺杂FeS2的可控合成。结构和组成表征发现,不同Co2+掺杂量会对FeS2的形貌产生影响,且掺杂后FeS2的(200)晶面间距增大。电化学性能测试表明,掺杂后样品具有更好的倍率性能和循环稳定性。优化样品在电流密度为1 A/g、2 A/g和4 A/g下,分别保持了264.3 mAh/g、224.9 mAh/g和193.4 mAh/g的可逆放电比容量。在1 A/g的电流密度下,循环450次后可保持229.8 mAh/g的放电比容量,容量保持率约为74.6%。储钠动力学分析表明,掺杂后样品显示出更高的Na+扩散效率,同时表现出赝电容占主导的储钠机制。该研究能够为新型钠离子电池负极材料的开发提供理论参考。

关键词: 钠离子电池, 掺杂, 负极材料, 二硫化铁, 反应机理

Abstract:

As typical conversion reaction-type anode materials for sodium-ion batteries (SIBs), iron-base sulfides possess high theoretical capacity, nontoxicity, and nature abundance, making them one of the potential anode materials that can be used in SIBs. However, iron-base sulfides with poor electron/ionic conductivity present a sluggish sodium storage kinetics, which restricts their practical applications. This study utilized iron disulfide (FeS2) as an example and applies the ion doping strategy to modify the crystal structure and investigate the sample's sodium storage performance. Co2+-doped FeS2 is specifically prepared through a feasible and controllable hydrothermal method. The characterization results reveal that the Co2+ amount in the precursor solution plays a key role in regulating the sample's microstructure. Moreover, an enlarged interplanar spacing of (200) is observed in FeS2. The electrochemical test reveals that the doped materials obtain enhanced rate capabilities and cyclic stability. The optimized sample has revisable specific capacities of 264.3, 224.9, and 193.4 mAh/g at current densities of 1, 2, and 4 A/g, respectively. A 229.8 mAh/g reversible discharge capacity is maintained at 1 A/g current density after 400 cycles, corresponding to 74.6% capacity retention. The kinetics analysis illustrates that the doped FeS2 presents an improved Na+ diffusion coefficient and a capacitive dominated sodium storage mechanism. This study provides theoretical reference for the fabrication of high-performance anode materials for SIBs.

Key words: sodium-ion batteries, heteroatom doping, anode materials, FeS2, reaction mechanism

中图分类号: