1 |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3: 18013.
|
2 |
WANG Y F, LIU Y, LI Q M, et al. New dual-anions FeS0.5Se0.5@NC porous nanorods as advanced electrode materials for wide-temperature sodium-ion half/full batteries[J]. Applied Surface Science, 2023, 620: 156836.
|
3 |
QI S H, XU B L, TIONG V T, et al. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 379: 122261.
|
4 |
NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie (International Ed in English), 2018, 57(1): 102-120.
|
5 |
DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137.
|
6 |
LI Y, LAI X Q, QU J P, et al. Research progress in regulation strategies of high-performance antimony-based anode materials for sodium ion batteries[J]. Acta Physico Chimica Sinica, 2022: 2204049.
|
7 |
ZHAO L N, QU Z H. Advanced flexible electrode materials and structural designs for sodium ion batteries[J]. Journal of Energy Chemistry, 2022, 71: 108-128.
|
8 |
LI X, QI S H, ZHANG W C, et al. Recent progress on FeS2 as anodes for metal-ion batteries[J]. Rare Metals, 2020, 39(11): 1239-1255.
|
9 |
YAN D, XIAO S H, LI X Y, et al. NiS2/FeS heterostructured nanoflowers for high-performance sodium storage[J]. Energy Material Advances, 2023, 4: 0012.
|
10 |
ZHU X X, WANG P, DING Y H, et al. Polycrystalline Fe- and Sn-based sulfides for high-capacity sodium-ion battery anodes[J]. Chemical Communications, 2023, 59(40): 6036-6039.
|
11 |
MA L L, HOU B X, ZHANG H, et al. Regulation of MIL-88B(Fe) to design FeS2 core-shelled hollow sphere as high-rate anode for a full sodium-ion battery[J]. Chemical Engineering Journal, 2023, 453: 139735.
|
12 |
LIM H, KIM S, KIM J H, et al. Carbon shell-coated mackinawite FeS platelets as anode materials for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 458: 141354.
|
13 |
CHEN K Y, LI G J, WANG Y J, et al. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries[J]. Green Energy & Environment, 2020, 5(1): 50-58.
|
14 |
FANG L B, BAHLAWANE N, SUN W P, et al. Conversion-alloying anode materials for sodium ion batteries[J]. Small, 2021, 17(37): 2101137.
|
15 |
CAO L A, GAO X W, ZHANG B, et al. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries[J]. ACS Nano, 2020, 14(3): 3610-3620.
|
16 |
ZHANG K, PARK M, ZHOU L M, et al. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(41): 12822-12826.
|
17 |
LU Z X, ZHAI Y J, WANG N N, et al. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 380: 122455.
|
18 |
CHEN D M, WU Y C, HUANG Z Q, et al. Phase transformation controlled Co1- xS-CoS2 heterostructures embedded in S-doped carbon nanofibers for superior Sodium-Ion storage[J]. Chemical Engineering Journal, 2023, 457: 141181.
|
19 |
ZHANG S G, ZHAO H P, MA W Y, et al. Insight to Se-doping effects on Fe7S8/carbon nanotubes composite as anode for sodium-ion batteries[J]. Journal of Power Sources, 2022, 536: 231458.
|
20 |
LU S, JIANG J, YANG H, et al. Phase engineering of iron-cobalt sulfides for Zn-air and Na-ion batteries[J]. ACS Nano, 2020, 14(8): 10438-10451.
|
21 |
LONG Y Q, YANG J, GAO X, et al. Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium-ion capacitors: The case of FeS2- xSex[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10945-10954.
|
22 |
LU X Y, SHI Y S, TANG D M, et al. Accelerated ionic and charge transfer through atomic interfacial electric fields for superior sodium storage[J]. ACS Nano, 2022, 16(3): 4775-4785.
|
23 |
LIN Q, ZHANG S C, YU L J, et al. Recycle waste washcloth to design Fe3O4/FeS2/C heterojunction membrane as high-area capacity freestanding anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 455: 140945.
|
24 |
WU H, YUAN R L, LI M J, et al. Co0.85Se-Fe7Se8 nanocuboids embedded in reduced graphene oxides as cycle-stable anodes for sodium-ion batteries[J]. Carbon, 2022, 198: 171-178.
|
25 |
马存双, 万延华, 许永开, 等. 超薄氮硫掺杂碳包覆二硫化铁的制备及储钠性能[J]. 无机盐工业, 2022, 54(6): 55-60.
|
|
MA C S, WAN Y H, XU Y K, et al. Preparation and sodium storage properties of ultra-thin N and S doped carbon coated FeS2[J]. Inorganic Chemicals Industry, 2022, 54(6): 55-60.
|
26 |
LU Z X, ZHAO Z X, LIU G Y, et al. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries[J]. Frontiers of Materials Science, 2022, 16(1): 220593.
|
27 |
SADAQAT A, ALI G, UL HASAN M, et al. Laminar-protuberant like p-FeS2 rooted in mesoporous carbon sheets as high capacity anode for Na-ion batteries[J]. Electrochimica Acta, 2023, 439: 141650.
|
28 |
ZHANG Z W, ZHONG X B, ZHANG Y H, et al. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries[J]. Rare Metals, 2022, 41(1): 21-28.
|
29 |
WANG S G, CUI T T, SHAO L Y, et al. In-situ fabrication of active interfaces towards FeSe as advanced performance anode for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 627: 922-930.
|
30 |
张德柳, 张言, 王海, 等. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348.
|
|
ZHANG D L, ZHANG Y, WANG H, et al. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating[J]. Energy Storage Science and Technology, 2023, 12(2): 339-348.
|
31 |
YUE L C, SONG W, WU Z G, et al. Constructing FeS2/TiO2 p-n heterostructure encapsulated in one-dimensional carbon nanofibers for achieving highly stable sodium-ion battery[J]. Chemical Engineering Journal, 2023, 455: 140824.
|
32 |
ZHANG D M, JIA J H, YANG C C, et al. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries[J]. Energy Storage Materials, 2020, 24: 439-449.
|
33 |
DONG C F, GUO L J, LI H B, et al. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries[J]. Energy Storage Materials, 2020, 25: 679-686.
|
34 |
WANG J, XU S D, LU Z H, et al. Hollow-structured CoSe2/C anode materials: Preparation and sodium storage properties for sodium-ion batteries[J]. Journal of Inorganic Materials, 2022, 37(12): 1344.
|
35 |
GAO L L, WANG J, WANG W L, et al. NiSe2/CoSe2 nanoparticles anchored on nitrogen-doped carbon nanosheets: Toward high performance anode for Na-ion battery[J]. Journal of Electroanalytical Chemistry, 2023, 928: 117013.
|