储能科学与技术 ›› 2023, Vol. 12 ›› Issue (8): 2482-2490.doi: 10.19799/j.cnki.2095-4239.2023.0178

• 储能材料与器件 • 上一篇    下一篇

钠离子电池黑磷基负极材料研究进展

张鼎1(), 叶子贤1, 刘镇铭1, 易群1, 史利娟1, 郭慧娟1, 黄毅1, 王莉2(), 何向明2   

  1. 1.武汉工程大学化工与制药学院,湖北 武汉,430205
    2.清华大学核能与新能源技术 研究院,北京 100084
  • 收稿日期:2023-03-25 修回日期:2023-04-07 出版日期:2023-08-05 发布日期:2023-08-23
  • 通讯作者: 王莉 E-mail:zhangding@wit.edu.cn;wang-l@tsinghua.edu.cn
  • 作者简介:张鼎(1983—),男,副教授,研究方向为锂离子电池、钠离子电池的关键材料和界面电化学,E-mail:zhangding@wit.edu.cn
  • 基金资助:
    国家自然科学基金项目(21978193);湖北省自然科学基金项目(2022CFB577)

Research progress of black phosphorus-based anode materials for sodium-ion batteries

Ding ZHANG1(), Zixian YE1, Zhenming LIU1, Qun YI1, Lijuan SHI1, Huijuan GUO1, Yi HUANG1, Li WANG2(), Xiangming HE2   

  1. 1.School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
    2.Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2023-03-25 Revised:2023-04-07 Online:2023-08-05 Published:2023-08-23
  • Contact: Li WANG E-mail:zhangding@wit.edu.cn;wang-l@tsinghua.edu.cn

摘要:

钠离子电池被认为是一种极具潜力的二次电池体系,得到了国内外的广泛关注。硬碳是主要的钠离子电池的负极材料,但是,由于硬碳材料固有比容量较低,极大地限制了其全电池能量密度的提升。相比之下,磷资源丰富,且作为活性材料具备理论比容量高的优点,可用于发展磷基高比容量和长寿命的钠离子电池负极材料。本文通过对近期相关文献的探讨,综述了提高结构稳定性和电化学性能的一些有效策略。黑磷能够较为容易地通过机械的方法制备,并与石墨烯、多壁碳纳米管、科琴黑等碳材料复合,但是微观化学键的构建需要额外考虑,碳材料表面与黑磷化学键结合能够显著增强结构和储钠可逆性。此外,也可以引入导电高分子材料和部分典型的二维材料与黑磷复合,实现材料和电极微观结构优化,提供了提升电化学性能的重要方法,最后展望了黑磷作为钠离子电池负极材料的发展前景。

关键词: 钠离子电池, 负极材料, 磷碳复合材料, 黑磷

Abstract:

Sodium-ion batteries have emerged as a promising energy storage technology with global interest. However, the limited specific capacity of hard carbon, the primary anode material for sodium-ion batteries, restrains further improvement in energy density for full cells. In contrast, phosphorus-based anode materials have gained attention for high-performance sodium-ion batteries owing to their abundance and high theoretical specific capacity. The review summarizes some efficient strategies to improve structural stability and electrochemical performance by exploring the recent relevant literature. Black phosphorus can be easily prepared through mechanical methods and complexed with carbon materials such as graphene, multi-walled carbon nanotubes, and ketjen black. However, it is important to consider the formation of microscopic chemical bonds to enhance structural integrity and sodium storage reversibility. The chemical bonding between the surfaces of carbon material and black phosphorus plays a crucial role in achieving these advancements. In addition, the combination of conductive polymer and two-dimensional compounds with black phosphorus offers a pathway for optimizing material properties and electrode microstructures, further enhancing the electrochemical performance of sodium-ion batteries. Finally, the development prospect of black phosphorus-based anode material for sodium-ion batteries is proposed, highlighting their potential in advancing energy storage.

Key words: sodium-ion battery, anode material, phosphorus carbon composite material, black phosphorus

中图分类号: