储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 721-742.doi: 10.19799/j.cnki.2095-4239.2022.0620

• 储能材料与器件 • 上一篇    下一篇

生物质衍生碳基材料在钠离子电池负极中的应用

苑雪1(), 李洪基1, 白文慧1, 李正曦2, 杨立滨2, 王恺2, 陈哲1()   

  1. 1.华北电力大学,北京 102206
    2.国网青海省电力公司经济技术研究院,青海 西宁 810008
  • 收稿日期:2022-10-24 修回日期:2022-12-10 出版日期:2023-03-05 发布日期:2022-12-19
  • 通讯作者: 陈哲 E-mail:yuanxue9912@163.com;chenz@ncepu.edu.cn
  • 作者简介:苑雪(1999—),女,硕士研究生,研究方向为钠离子电池负极材料,E-mail:yuanxue9912@163.com
  • 基金资助:
    国家电网科技项目(5500-202158251A-0-0-00)

Application of biomass-derived carbon-based anode materials in sodium ion battery

Xue YUAN1(), Hongji LI1, Wenhui BAI1, Zhengxi LI2, Libin YANG2, Kai WANG2, Zhe CHEN1()   

  1. 1.North China Electric Power University, Beijing 102206, China
    2.Economics and Technology Research Institute, State Grid Qinghai Electric Power Company, Xining 810008, Qinghai, China
  • Received:2022-10-24 Revised:2022-12-10 Online:2023-03-05 Published:2022-12-19
  • Contact: Zhe CHEN E-mail:yuanxue9912@163.com;chenz@ncepu.edu.cn

摘要:

近年来,随着可再生能源的大规模应用,开发安全可靠的储能设备对于解决可再生能源的间歇性、不稳定性等问题,实现能源的持续性输出具有重要意义。锂离子电池作为重要的储能设备已成功应用于多个领域,然而,锂资源储量有限、分布不均匀且成本较高,难以满足未来的应用需求。钠离子电池再次进入研究人员的视野,钠离子电池的储能机理与锂离子电池相似,钠与锂位于同一主族,除物理化学性质与锂相似之外,在储量和成本上同样具有较大优势。开发高容量、优异倍率性能和长循环寿命的负极材料是钠离子电池实现产业化的关键。以资源丰富、成本低廉且可再生的生物质合成的碳基负极材料得到广泛研究,其优良的储钠性能已得到证实,有望成为最具潜力的新型低成本高性能钠离子电池负极材料。本文首先介绍了生物质衍生碳基材料主要来源于植物器官、秸秆和废弃生物质,其次阐述了热解法、化学活化法和模板法等制备生物质衍生碳基负极材料的方法,探讨了不同结构的生物质衍生碳基材料的储钠性能,分析了生物质衍生碳基材料的储钠机制,并展望了生物质衍生碳基负极材料未来的研究方向。

关键词: 生物质, 钠离子电池, 负极材料, 储钠机制

Abstract:

Recently, with the large-scale application of renewable energy, the development of safe and reliable energy storage equipment is essential to solving the intermittent and unstable problems of renewable energy and realizing sustainable energy output. Lithium-ion batteries (LIBs) are an important energy storage device in many fields. However, future application requirements are challenging due to limited reserves, uneven distribution, and the high cost of lithium resources. Hence, interest in sodium-ion batteries (SIBs) arises for storing energy similarly to LIBs since sodium and lithium are in the same main group. Besides similar physical and chemical properties, SIBs also have great storage capacity and cost advantages. Developing anode materials with high capacity, excellent rate performance, and long cycle life is the key to the industrialization of SIBs. Carbon-based anode materials synthesized from abundant, low-cost, and renewable biomass have been widely studied. Their excellent sodium storage performance has been proven, which is expected to become the most promising novel low-cost and high-performance anode materials for SIBs. This study discusses biomass-derived carbon-based materials derived from plant organs, straw, and waste biomass. The methods of producing biomass-derived carbon-based anode materials by pyrolysis, chemical activation, and template methods are described. The sodium storage properties and mechanism of biomass-derived carbon-based materials with different structures are discussed. Finally, the future research direction of biomass-derived carbon-based anode materials is forecasted.

Key words: biomass, sodium-ion battery, anode material, sodium storage mechanism

中图分类号: