储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 721-742.doi: 10.19799/j.cnki.2095-4239.2022.0620
苑雪1(), 李洪基1, 白文慧1, 李正曦2, 杨立滨2, 王恺2, 陈哲1()
收稿日期:
2022-10-24
修回日期:
2022-12-10
出版日期:
2023-03-05
发布日期:
2022-12-19
通讯作者:
陈哲
E-mail:yuanxue9912@163.com;chenz@ncepu.edu.cn
作者简介:
苑雪(1999—),女,硕士研究生,研究方向为钠离子电池负极材料,E-mail:yuanxue9912@163.com;
基金资助:
Xue YUAN1(), Hongji LI1, Wenhui BAI1, Zhengxi LI2, Libin YANG2, Kai WANG2, Zhe CHEN1()
Received:
2022-10-24
Revised:
2022-12-10
Online:
2023-03-05
Published:
2022-12-19
Contact:
Zhe CHEN
E-mail:yuanxue9912@163.com;chenz@ncepu.edu.cn
摘要:
近年来,随着可再生能源的大规模应用,开发安全可靠的储能设备对于解决可再生能源的间歇性、不稳定性等问题,实现能源的持续性输出具有重要意义。锂离子电池作为重要的储能设备已成功应用于多个领域,然而,锂资源储量有限、分布不均匀且成本较高,难以满足未来的应用需求。钠离子电池再次进入研究人员的视野,钠离子电池的储能机理与锂离子电池相似,钠与锂位于同一主族,除物理化学性质与锂相似之外,在储量和成本上同样具有较大优势。开发高容量、优异倍率性能和长循环寿命的负极材料是钠离子电池实现产业化的关键。以资源丰富、成本低廉且可再生的生物质合成的碳基负极材料得到广泛研究,其优良的储钠性能已得到证实,有望成为最具潜力的新型低成本高性能钠离子电池负极材料。本文首先介绍了生物质衍生碳基材料主要来源于植物器官、秸秆和废弃生物质,其次阐述了热解法、化学活化法和模板法等制备生物质衍生碳基负极材料的方法,探讨了不同结构的生物质衍生碳基材料的储钠性能,分析了生物质衍生碳基材料的储钠机制,并展望了生物质衍生碳基负极材料未来的研究方向。
中图分类号:
苑雪, 李洪基, 白文慧, 李正曦, 杨立滨, 王恺, 陈哲. 生物质衍生碳基材料在钠离子电池负极中的应用[J]. 储能科学与技术, 2023, 12(3): 721-742.
Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 721-742.
1 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
2 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
3 | ROLISON D R, NAZAR L F. Electrochemical energy storage to power the 21st century[J]. MRS Bulletin, 2011, 36(7): 486-493. |
4 | KUNDU D P, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie (International Ed in English), 2015, 54(11): 3431-3448. |
5 | WANG L P, YU L H, WANG X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9353-9378. |
6 | ELLIS B L, MAKAHNOUK W R M, MAKIMURA Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007, 6(10): 749-753. |
7 | YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-517. |
8 | FANG C, HUANG Y H, ZHANG W X, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(5): doi: 10.1002/aenm.201501727. |
9 | 张宁, 刘永畅, 陈程成, 等. 钠离子电池电极材料研究进展[J]. 无机化学学报, 2015, 31(9): 1739-1750. |
ZHANG N, LIU Y C, CHEN C C, et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1739-1750. | |
10 | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. |
11 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
12 | CAO W, ZHANG E J, WANG J, et al. Potato derived biomass porous carbon as anode for potassium ion batteries[J]. Electrochimica Acta, 2019, 293: 364-370. |
13 | KIM H, SEO D H, KIM H, et al. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M=Fe, Mn, Co) anodes in lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24(4): 720-725. |
14 | ANTONIETTI M, CHEN X D, YAN R Y, et al. Storing electricity as chemical energy: Beyond traditional electrochemistry and double-layer compression[J]. Energy & Environmental Science, 2018, 11(11): 3069-3074. |
15 | LI S, DONG Y F, XU L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(21): 3545-3553. |
16 | BALOGUN M S, LUO Y, QIU W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178. |
17 | ZOU L, KANG F Y, ZHENG Y P, et al. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries[J]. Electrochimica Acta, 2009, 54(15): 3930-3934. |
18 | HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201602898. |
19 | ZHANG L X, LIU Z H, CUI G L, et al. Biomass-derived materials for electrochemical energy storages[J]. Progress in Polymer Science, 2015, 43: 136-164. |
20 | WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428. |
21 | CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
22 | HEINIMÖ J, JUNGINGER M. Production and trading of biomass for energy-An overview of the global status[J]. Biomass and Bioenergy, 2009, 33(9): 1310-1320. |
23 | TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: A review[J]. Bioresource Technology, 2016, 212: 318-333. |
24 | WANG Q Q, ZHU X S, LIU Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. |
25 | WU L M, BUCHHOLZ D, VAALMA C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries[J]. ChemElectroChem, 2016, 3(2): 292-298. |
26 | RATH P C, PATRA J, HUANG H T, et al. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries[J]. ChemSusChem, 2019, 12(10): 2302-2309. |
27 | HUANG Q, SONG S, CHEN Z, et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of-the-art review[J]. Biochar, 2019, 1(1): 45-73. |
28 | LOTFABAD E M, DING J, CUI K, et al. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano, 2014, 8(7): 7115-7129. |
29 | BHARTI V, GANGADHARAN A, RAO T, et al. Carbon soot over layered sulfur impregnated coconut husk derived carbon: An efficient polysulfide suppressor for lithium sulfur battery[J]. Materials Today Communications, 2020, 22: doi: 10.1016/j.mtcomm.2019.100717. |
30 | JIANG Q, ZHANG Z H, YIN S Y, et al. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries[J]. Applied Surface Science, 2016, 379: 73-82. |
31 | XU Z G. Corncob-derived porous carbon as an interlayer coating to improve the performance of lithium sulphur battery[J]. International Journal of Electrochemical Science, 2017: 4515-4527. |
32 | HAO E C, LIU W, LIU S, et al. Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(5): 2204-2214. |
33 | SHEN Y L, SUN S J, YANG M, et al. Typha-derived hard carbon for high-performance sodium ion storage[J]. Journal of Alloys and Compounds, 2019, 784: 1290-1296. |
34 | ZHU Z Y, LIANG F, ZHOU Z R, et al. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(4): 1513-1522. |
35 | ZHANG N, LIU Q, CHEN W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources, 2018, 378: 331-337. |
36 | QIN D C, LIU Z Y, ZHAO Y Z, et al. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode[J]. Carbon, 2018, 130: 664-671. |
37 | OU J K, WANG J Y, ZHAO G, et al. Buckwheat derived nitrogen-rich porous carbon material with a high-performance Na-storage[J]. Journal of Porous Materials, 2020, 27(4): 1139-1147. |
38 | WANG X K, SHI J, MI L W, et al. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries[J]. Rare Metals, 2020, 39(9): 1053-1062. |
39 | 钟家宝, 李瑀, 王玲, 等. 梧桐果壳衍生硬碳用作钠离子电池负极材料[J]. 功能高分子学报, 2022, 35(5): 408-416. |
ZHONG J B, LI Y, WANG L, et al. Sycamore husk-derived hard carbon as anode material for sodium-ion batteries[J]. Journal of Functional Polymers, 2022, 35(5): 408-416. | |
40 | YANG T Z, QIAN T, WANG M F, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(3): 539-545. |
41 | ARIE A A, TEKIN B, DEMIR E, et al. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery[J]. Materials Technology, 2019, 34(9): 515-524. |
42 | SHENG C D, AZEVEDO J L T. Estimating the higher heating value of biomass fuels from basic analysis data[J]. Biomass and Bioenergy, 2005, 28(5): 499-507. |
43 | BISWAS B, PANDEY N, BISHT Y, et al. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk[J]. Bioresource Technology, 2017, 237: 57-63. |
44 | GUO F Q, JIANG X C, JIA X P, et al. Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors[J]. Journal of Electroanalytical Chemistry, 2019, 844: 105-115. |
45 | LUO D H, HAN P, SHI L D, et al. Biomass-derived nitrogen/oxygen co-doped hierarchical porous carbon with a large specific surface area for ultrafast and long-life sodium-ion batteries[J]. Applied Surface Science, 2018, 462: 713-719. |
46 | DING J, WANG H L, LI Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015. |
47 | LYU T Y, LAN X X, LIANG L Z, et al. Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion storage[J]. Electrochimica Acta, 2021, 365: doi: 10.1016/j.electacta.2020.137356. |
48 | DING J, ZHANG Y, HUANG Y D, et al. Sulfur and phosphorus co-doped hard carbon derived from oak seeds enabled reversible sodium spheres filling and plating for ultra-stable sodium storage[J]. Journal of Alloys and Compounds, 2021, 851: doi: 10.1016/j.jallcom.2020.156791. |
49 | SUSANTI R F, ALVIN S, KIM J. Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step[J]. Journal of Industrial and Engineering Chemistry, 2020, 91: 317-329. |
50 | CONG L, TIAN G R, LUO D X, et al. Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 871: doi: 10.1016/j.jelechem.2020.114249. |
51 | SEKAR M, MATHIMANI T, ALAGUMALAI A, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil-Bottlenecks and scope[J]. Fuel, 2021, 283: doi: 10.1016/j.fuel.2020.119190. |
52 | PEI L Y, CAO H L, YANG L T, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics, 2020, 26(11): 5535-5542. |
53 | ZHANG Y J, LI X, DONG P, et al. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42796-42803. |
54 | QIN D C, ZHANG F, DONG S Y, et al. Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes[J]. RSC Advances, 2016, 6(108): 106218-106224. |
55 | WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
56 | BUDINOVA T, EKINCI E, YARDIM F, et al. Characterization and application of activated carbon produced by H3PO4 and water vapor activation[J]. Fuel Processing Technology, 2006, 87(10): 899-905. |
57 | PRAHAS D, KARTIKA Y, INDRASWATI N, et al. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 32-42. |
58 | TANG W J, ZHANG Y F, ZHONG Y, et al. Natural biomass-derived carbons for electrochemical energy storage[J]. Materials Research Bulletin, 2017, 88: 234-241. |
59 | BAG O, TEKIN K, KARAGOZ S. Microporous activated carbons from lignocellulosic biomass by KOH activation[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(12): 1030-1037. |
60 | BASTA A H, FIERRO V, EL-SAIED H, et al. 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons[J]. Bioresource Technology, 2009, 100(17): 3941-3947. |
61 | HONG K L, QIE L, ZENG R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12733-12738. |
62 | WANG H L, YU W H, SHI J, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 188: 103-110. |
63 | XU Z P, HUANG Y, DING L, et al. Highly stable basswood porous carbon anode activated by phosphoric acid for a sodium ion battery[J]. Energy & Fuels, 2020, 34(9): 11565-11573. |
64 | ZHU Y D, HUANG Y, CHEN C, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochimica Acta, 2019, 321: doi: 10.1016/j.electacta.2019.134698. |
65 | QU Y H, GUO M M, WANG X W, et al. Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 791: 874-882. |
66 | YU P F, ZHANG W C, YANG Y H, et al. Facile construction of uniform ultramicropores in porous carbon for advanced sodium-ion battery[J]. Journal of Colloid and Interface Science, 2021, 582: 852-858. |
67 | GUO L, AN Y, FEI H, et al. Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries[J]. Materials Technology, 2017, 32(10): 592-597. |
68 | CAO L Y, HUI W L, XU Z W, et al. Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 695: 632-637. |
69 | WANG J, YAN L, REN Q J, et al. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery[J]. Electrochimica Acta, 2018, 291: 188-196. |
70 | SEKAR S, AQUEEL AHMED A T, KIM D Y, et al. One-pot synthesized biomass C-Si nanocomposites as an anodic material for high-performance sodium-ion battery[J]. Nanomaterials (Basel, Switzerland), 2020, 10(9): doi: 10.3390/nano10091728. |
71 | XIONG W, WANG Z Y, ZHANG J Q, et al. Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2017, 7: 229-235. |
72 | XU F, TANG Z W, HUANG S Q, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms8221. |
73 | ZHANG J Y, CHEN Z Y, WANG G Y, et al. Eco-friendly and scalable synthesis of micro-/ mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries[J]. Applied Surface Science, 2020, 533: doi: 10.1016/j.apsusc.2020.147511. |
74 | LI Y M, XU S Y, WU X Y, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(1): 71-77. |
75 | LIAN Y J, XIN W L, ZHANG M, et al. Low-content Ni-doped CoS2 embedded within N, P-codoped biomass-derived carbon spheres for enhanced lithium/sodium storage[J]. Journal of Materials Science, 2019, 54(11): 8504-8514. |
76 | SHEN F, ZHU H L, LUO W, et al. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 23291-23296. |
77 | LUO W, SCHARDT J, BOMMIER C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10662-10666. |
78 | LI D H, SUN Y Y, CHEN S, et al. Highly porous FeS/carbon fibers derived from Fe-carrageenan biomass: High-capacity and durable anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(20): 17175-17182. |
79 | ZHANG Y H, LV C X, WANG X, et al. Boosting sodium-ion storage by encapsulating NiS (CoS) hollow nanoparticles into carbonaceous fibers[J]. ACS Applied Materials & Interfaces, 2018, 10(47): 40531-40539. |
80 | LIU H L, LV C X, CHEN S, et al. Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 54-59. |
81 | KIM N R, YUN Y S, SONG M Y, et al. Citrus-peel-derived, nanoporous carbon nanosheets containing redox-active heteroatoms for sodium-ion storage[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3175-3181. |
82 | WANG H Y, JIANG H, HU Y J, et al. Interface-engineered MoS2/C nanosheet heterostructure arrays for ultra-stable sodium-ion batteries[J]. Chemical Engineering Science, 2017, 174: 104-111. |
83 | WANG Q D, ZHAO C L, LU Y X, et al. Advanced nanostructured anode materials for sodium-ion batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2017, 13(42): doi: 10.1002/smll.201701835. |
84 | HU H Y, XIAO Y, LING W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery[J]. Energy Technology, 2021, 9(1): doi: 10.1002/ente.202000730. |
85 | DAN R Q, CHEN W M, XIAO Z W, et al. N-doped biomass carbon/reduced graphene oxide as a high-performance anode for sodium-ion batteries[J]. Energy & Fuels, 2020, 34(3): 3923-3930. |
86 | ZOU L, LAI Y Q, HU H X, et al. N/S Co-doped 3 D porous carbon nanosheet networks enhancing anode performance of sodium-ion batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2017, 23(57): 14261-14266. |
87 | ZHAO Q, MENG Y, LI J, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method[J]. Applied Surface Science, 2019, 481: 473-483. |
88 | GAO L F, MA J Q, LI S P, et al. 2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries[J]. Nanoscale, 2019, 11(26): 12626-12636. |
89 | YIN Y Y, ZHANG Y, LIU N N, et al. Biomass-derived P/N-Co-doped carbon nanosheets encapsulate Cu3P nanoparticles as high-performance anode materials for sodium-ion batteries[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00316. |
90 | YUE L, XU W Y, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Applied Surface Science, 2021, 546: doi: 10.1016/j.apsusc.2021.149168. |
91 | SHEN H T, ZHAO H Q, KANG M M, et al. Sodium storage in coal/biomass-derived carbon/carbon 3D networks[J]. ChemElectroChem, 2019, 6(17): 4541-4544. |
92 | WANG Y Y, HOU B H, NING Q L, et al. Hierarchically porous nanosheets-constructed 3D carbon network for ultrahigh-capacity supercapacitor and battery anode[J]. Nanotechnology, 2019, 30(21): doi: 10.1088/1361-6528/ab043a. |
93 | ZHAO G Y, YU D F, CHEN C, et al. One-step production of carbon nanocages for supercapacitors and sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 878: doi: 10.1016/j.jelechem.2020.114551. |
94 | WEN Y, HE K, ZHU Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: doi: 10.1038/ncomms5033. |
95 | SUN N, LIU H, XU B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20560-20566. |
96 | FENG Y M, TAO L, ZHENG Z F, et al. Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism[J]. Energy Storage Materials, 2020, 31: 274-309. |
97 | LIN M, DENG M D, ZHOU C J, et al. Popcorn derived carbon enhances the cyclic stability of MoS2 as an anode material for sodium-ion batteries[J]. Electrochimica Acta, 2019, 309: 25-33. |
98 | ZHAO G Y, YU D F, ZHANG H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy, 2020, 67: doi: 10.1016/j.nanoen.2019.104219. |
99 | CHEN S L, FENG F, MA Z F. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: doi: 10.1016/j.coco.2020.100447. |
100 | LIU Y C, SHI M J, YAN C, et al. Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6583-6592. |
101 | ZHU Y Y, CHEN M M, LI Q, et al. A porous biomass-derived anode for high-performance sodium-ion batteries[J]. Carbon, 2018, 129: 695-701. |
102 | ZHANG F, YAO Y G, WAN J Y, et al. High temperature carbonized grass as a high performance sodium ion battery anode[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 391-397. |
103 | WANG C W, HUANG J F, LI J Y, et al. Revealing the effect of nanopores in biomass-derived carbon on its sodium-ion storage behavior[J]. ChemElectroChem, 2020, 7(1): 201-211. |
104 | LIU T, LI X F. Biomass-derived nanostructured porous carbons for sodium ion batteries: A review[J]. Materials Technology, 2019, 34(4): 232-245. |
105 | QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201700403. |
106 | ARIE A A, KRISTIANTO H, DEMIR E, et al. Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries[J]. Materials Chemistry and Physics, 2018, 217: 254-261. |
107 | ZHOU S Y, TANG Z, PAN Z Y, et al. Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature[J]. SusMat, 2022, 2(3): 357-367. |
108 | LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): doi: 10.1002/aenm.201902852. |
109 | LI Y Q, ZHANG L Y, WANG X L, et al. Sodium-storage behavior of electron-rich element-doped amorphous carbon[J]. Applied Physics Reviews, 2021, 8(1): doi: 10.1063/5.0029686. |
[1] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
[2] | 张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. |
[3] | 田孟羽, 武怿达, 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.10.01—2022.11.30)[J]. 储能科学与技术, 2023, 12(1): 1-15. |
[4] | 王绍聪, 李伟, 黄瑞琴, 郭艺飞, 刘峥. 锰基钠离子电池正极材料Jahn-Teller效应抑制方法进展[J]. 储能科学与技术, 2023, 12(1): 139-149. |
[5] | 张文舒, 胡方圆, 黄昊, 王旭东, 姚曼. 基于Ti基MXene的储钠负极及其性能调控机制[J]. 储能科学与技术, 2023, 12(1): 35-41. |
[6] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[7] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[8] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[9] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[10] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[11] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[12] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[13] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[14] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[15] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||