储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1011-1017.doi: 10.19799/j.cnki.2095-4239.2022.0705

• 储能材料与器件 •    下一篇

O3-NaNi0.4Fe0.2Mn0.4O2 正极Na+ 传输动力学及相变机制

周亚男(), 滑纬博, 周德重()   

  1. 西安交通大学,陕西 西安 710049
  • 收稿日期:2022-11-30 修回日期:2022-12-11 出版日期:2023-04-05 发布日期:2022-12-19
  • 通讯作者: 周德重 E-mail:ynzhou@stu.xjtu.edu.cn;dezhong.zhou@xjtu.edu.cn
  • 作者简介:周亚男(1993—),女,博士研究生,研究方向为钠离子电池,E-mail:ynzhou@stu.xjtu.edu.cn
  • 基金资助:
    中央高校基本科研业务服务费(xzy022021008)

Understanding the Na+ transport kinetics and phase transition mechanism of O3-NaNi0.4Fe0.2Mn0.4O2 cathode materials

Ya′nan ZHOU(), Weibo HUA, Dezhong ZHOU()   

  1. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2022-11-30 Revised:2022-12-11 Online:2023-04-05 Published:2022-12-19
  • Contact: Dezhong ZHOU E-mail:ynzhou@stu.xjtu.edu.cn;dezhong.zhou@xjtu.edu.cn

摘要:

钠离子电池因其成本低廉、环境友好且与锂离子电池工作原理相似,在大规模储能领域极具应用潜力。作为决定电池能量密度的关键组成部分,O3型钠基层状过渡金属氧化物因高容量、合成简单等优势在众多正极材料中脱颖而出。然而,Na+在O3结构中八面体位点间的迁移需克服较大的能垒,最终导致复杂反应相变的发生和容量快速衰减。因此,探究O3型正极材料电化学反应过程中Na+脱嵌行为与结构演变的构效关系对开发高性能正极材料至关重要。本工作以O3-NaNi0.4Fe0.2Mn0.4O2(O3-NFM)正极为研究对象,对其电化学性能、Na+传输动力学性质及相变机制展开了系统研究。电化学测试结果表明,O3-NFM在充电至高压(4.3 V)时可脱出0.84 mol Na+,发挥约201.9 mAh/g的比容量,但可逆性欠佳。当截止电压为4.0 V时,该正极材料循环性能优异,原位XRD结果进一步证明了电化学反应过程中O3-P3/O3-P3-P3/O3-O3的可逆结构转变。循环伏安(CV)曲线和恒电流间歇滴定技术(GITT)结果表明其具有快速的钠离子扩散速率,从而表现出较好的倍率性能。本研究为探索以O3-NFM为基础的正极材料结构设计及性能调控提供了理论基础。

关键词: 钠离子电池, 过渡金属氧化物, O3-NaNi0.4Fe0.2Mn0.4O2, 原位XRD

Abstract:

Sodium-ion batteries have promising potential in large-scale electric storage applications due to their low cost, environmental friendliness, and similar working principles to lithium-ion batteries. O3-type layered oxides are used as a cathode material that determines the energy density of SIBs and stand out from other cathodes due to their high capacity and ease of synthesis. However, the migration of Na+ between octahedral positions in the O3 phase must overcome a large energy barrier, which results in complex reaction phase transitions and rapid capacity decay. Therefore, the Na+ de-intercalation behavior and the structural evolution of O3-type structure should be explored before developing high-performance cathodes. Herein, we systematically investigated the electrochemical properties, Na+ transport kinetics, and phase transition mechanism of O3-NaNi0.4Fe0.2Mn0.4O2 (O3-NFM). The O3-NFM cathode delivered a capacity about 201.9 mAh/g (corresponding to 0.84 mol of Na+ extraction) when charged to 4.3 V. After the cut-off voltage is set to 4.0 V, O3-NFM can achieve a stable reversible cycle. The improved cycling performance between 2.0 V and 4.0 V can be ascribed to the reversible transformation of O3-P3/O3-P3-P3/O3-O3 structural evolution, as determined by in situ X-ray diffraction. A fast kinetics of the Na+ diffusion in the O3 structure was revealed by cyclic voltammetry and galvanostatic intermittent titration technique techniques, which contributes to a good rate performance. This work provides a theoretical basis for investigating the structure modification and material design based on O3-NFM cathodes.

Key words: sodium batteries, layered oxide, O3-NaNi0.4Fe0.2Mn0.4O2, in-situ XRD

中图分类号: