1 |
CHEN D, YANG R, CHEN L P, et al. One-pot fabrication of nitrogen and sulfur dual-doped graphene/sulfur cathode via microwave assisted method for long cycle-life lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2018, 746: 116-124.
|
2 |
YANG Y, ZHENG G Y, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032.
|
3 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
4 |
HE J R, LUO L, CHEN Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(34): doi: 10.1002/adma.201702707.
|
5 |
HE J R, CHEN Y F, MANTHIRAM A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries[J]. Advanced Energy Materials, 2019, 9(20): doi: 10.1002/aenm.201900584.
|
6 |
HE J R, BHARGAV A, YAGHOOBNEJAD ASL H, et al. 1T'-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li-S batteries[J]. Advanced Energy Materials, 2020, 10(23): doi: 10.1002/aenm.202001017.
|
7 |
SUN Z X, VIJAY S, HEENEN H H, et al. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(22): doi:10.1002/aenm.201904010.
|
8 |
FU X W, SCUDIERO L, ZHONG W H. A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(4): 1835-1848.
|
9 |
WANG H, WANG Y Y, ZHENG P T, et al. Self-healing double-cross-linked supramolecular binders of a polyacrylamide-grafted soy protein isolate for Li-S batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12799-12808.
|
10 |
FAN L L, LI M, LI X F, et al. Interlayer material selection for lithium-sulfur batteries[J]. Joule, 2019, 3(2): 361-386.
|
11 |
CHEN P, FU Y S, WU Z, et al. Labyrinth-inspired nitrogen-sulfur co-doped reduced holey graphene oxide/carbonized cellulose paper: A permselective and multifunctional interlayer for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2019, 434: doi: 10.1016/j.jpowsour.2019.226.
|
12 |
ZHANG H, ESHETU G G, JUDEZ X, et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives[J]. Angewandte Chemie (International Ed in English), 2018, 57(46): 15002-15027.
|
13 |
SHI P C, LIANG X, XU K, et al. Sulfone-assisted-NH4I as electrolyte additive with synergistic dissolution and catalysis effects on reducing the activation voltage of Li2S cathode[J]. Chemical Engineering Journal, 2020, 398: doi: 10.1016/j.cej.2020.125608.
|
14 |
WANG D D, LIU H D, LI M Q, et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries[J]. Nano Energy, 2020, 75: doi: j.nanoen.2020.104889.
|
15 |
CHEN W J, ZHAO C X, LI B Q, et al. A mixed ether electrolyte for lithium metal anode protection in working lithium-sulfur batteries[J]. Energy & Environmental Materials, 2020, 3(2): 160-165.
|
16 |
LONG M C, WU G, WANG X L, et al. Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries[J]. Energy Storage Materials, 2022, 53: 62-71.
|
17 |
DENG K R, GUAN T Y, LIANG F H, et al. Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(12): 7692-7702.
|
18 |
OH J, LEE H S, KIM M P, et al. A trade-off-free fluorosulfate-based flame-retardant electrolyte additive for high-energy lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(41): 21933-21940.
|
19 |
SUN Y Z, HUANG J Q, ZHAO C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China Chemistry, 2017, 60(12): 1508-1526.
|
20 |
ZHANG W Y, BARRIO J, GERVAIS C, et al. Synthesis of carbon-nitrogen-phosphorous materials with an unprecedented high amount of phosphorous toward an efficient fire-retardant material[J]. Angewandte Chemie (International Ed in English), 2018, 57(31): 9764-9769.
|
21 |
QIU S L, ZHOU Y F, ZHOU X, et al. Air-stable polyphosphazene-functionalized few-layer black phosphorene for flame retardancy of epoxy resins[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(10): doi: 10.1002/smll.201805175.
|
22 |
CHEN W, LEI T Y, WU C Y, et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8(10): doi: 10.1002/aenm.201702348.
|
23 |
YEŞILOT S, KÜÇÜKKÖYLÜ S, MUTLU T, et al. Halogen-free polyphosphazene-based flame retardant cathode materials for Li-S batteries[J]. Energy Technology, 2021, 9(12): doi:10.1002/ente.202100563.
|
24 |
CHEN P, WU Z, GUO T, et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(9): doi: 10.1002/adma.202007549.
|