1 |
SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
|
2 |
ARBIZZANI C, YU Y, LI J, et al. Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019.227636.
|
3 |
YI M, XIANG F F, YUE X Q, et al. Porous Ni2P/Co2(P2O7) heterojunction nanosheets as an advanced electrode for high-performance supercapacitors[J]. Applied Surface Science, 2022, 604: doi: 10.1016/j.apsusc.2022.154503.
|
4 |
ZONG Q, LIU C F, YANG H, et al. Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors[J]. Nano Today, 2021, 38: doi: 10.1016/j.nantod.2021.101201.
|
5 |
SUN M, LIU H J, QU J H, et al. Earth-rich transition metal phosphide for energy conversion and storage[J]. Advanced Energy Materials, 2016, 6(13): doi: 10.1002/aenm.201600087.
|
6 |
ZHANG L, CHANG C, HSU C W, et al. Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly efficient and durable electrocatalysts for the oxygen evolution reaction at high current densities[J]. Journal of Materials Chemistry A, 2017, 5(37): 19656-19663.
|
7 |
JIANG J, LI Z P, HE X R, et al. Novel skutterudite CoP3-based asymmetric supercapacitor with super high energy density[J]. Small, 2020, 16(31): doi: 10.1002/smll.202000180.
|
8 |
SIVAKUMAR P, JUNG M G, RAJ C J, et al. 1D interconnected porous binary transition metal phosphide nanowires for high performance hybrid supercapacitors[J]. International Journal of Energy Research, 2021, 45(11): 17005-17014.
|
9 |
XU W C, WANG T, WANG H X, et al. Free-standing amorphous nanoporous nickel cobalt phosphide prepared by electrochemically delloying process as a high performance energy storage electrode material[J]. Energy Storage Materials, 2019, 17: 300-308.
|
10 |
ZHOU Q F, GONG Y, TAO K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134582.
|
11 |
KONG M L, WANG Z, WANG W Y, et al. NiCoP nanoarray: A superior pseudocapacitor electrode with high areal capacitance[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2017, 23(18): 4435-4441.
|
12 |
CHU X Y, MENG F L, YANG H, et al. Cu-doped layered double hydroxide constructs the performance-enhanced supercapacitor via band gap reduction and defect triggering[J]. ACS Applied Energy Materials, 2022, 5(2): 2192-2201.
|
13 |
ELSHAHAWY A M, GUAN C, LI X, et al. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor[J]. Nano Energy, 2017, 39: 162-171.
|
14 |
JIN Y H, ZHAO C C, JIANG Q L, et al. Preparation and electrochemical capacitive performance of hollow urchin-like Ni2P/CoP bimetallic phosphides for high-performance supercapacitors[J]. Materials Letters, 2018, 219: 59-63.
|
15 |
佟永丽, 武祥. 金属有机框架衍生的Co3O4电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043.
|
|
TONG Y L, WU X. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework[J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043.
|
16 |
陈帅, 陈灵, 江浩. 氮掺杂无定形氧化钒纳米片阵列用于快充型准固态超级电容器[J]. 储能科学与技术, 2021, 10(3): 945-951.
|
|
CHEN S, CHEN L, JIANG H. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors[J]. Energy Storage Science and Technology, 2021, 10(3): 945-951.
|
17 |
LIANG H F, XIA C, JIANG Q, et al. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors[J]. Nano Energy, 2017, 35: 331-340.
|
18 |
DONG Y X, YUE X Q, LIU Y, et al. Hierarchical core-shell-structured bimetallic nickel-cobalt phosphide nanoarrays coated with nickel sulfide for high-performance hybrid supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 628: 222-232.
|
19 |
ZHANG P, YANG Z H. Three-dimensional Cu-Co-Se-P nanocomposites as flexible supercapacitor electrodes[J].Journal of Materials Science: Materials in Electronics, 2022, 33(10): 7396-7402.
|
20 |
PAN Y, CHEN Y J, LIN Y, et al. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(38): 14675-14686.
|
21 |
BLANCHARD P E R, GROSVENOR A P, CAVELL R G, et al. X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni)[J]. Chemistry of Materials, 2008, 20(22): 7081-7088.
|
22 |
MOOSAVIFARD S E, FANI S, RAHMANIAN M. Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors[J]. Chemical Communications (Cambridge, England), 2016, 52(24): 4517-4520.
|
23 |
WU X Y, LI S M, LIU J H, et al. Multiplex compounds of Ni, Cu, Co-based oxyphosphide nanowire arrays grown on Ni foam: A well-designed free-standing anode for high-capacity lithium storage[J]. Journal of Alloys and Compounds, 2019, 799: 406-414.
|
24 |
LEDENDECKER M, KRICK CALDERÓN S, PAPP C, et al. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting[J]. Angewandte Chemie International Edition, 2015, 54(42): 12361-12365.
|
25 |
LIU Y, FU N, ZHANG G, et al. Design of hierarchical Ni‐Co@Ni‐Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors[J]. Advanced Functional Materials, 2017, 27(8): doi: 10.1002/adfm.201605307.
|
26 |
HE S X, LI Z W, MI H Y, et al. 3D nickel-cobalt phosphide heterostructure for high-performance solid-state hybrid supercapacitors[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228324.
|
27 |
LEI X Y, GE S C, TAN Y H, et al. High capacity and energy density of Zn-Ni-Co-P nanowire arrays as an advanced electrode for aqueous asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9158-9168.
|
28 |
LI X L, HUANG J J, WANG L, et al. Hierarchical honeycomb-like networks of CuCo-P@Ni(OH)2 nanosheet arrays enabling high-performance hybrid supercapacitors[J]. Journal of Alloys and Compounds, 2020, 838: doi: 10.1016/j.jallcom.2020.155626.
|
29 |
SALEH A A, AHMED N, BIBY A H, et al. Supercapattery electrode materials by design: Plasma-induced defect engineering of bimetallic oxyphosphides for energy storage[J]. Journal of Colloid and Interface Science, 2021, 603: 478-490.
|
30 |
LYU L L, HOOCH ANTINK W, LEE B H, et al. Zeolitic imidazole framework sacrificial template-assisted synthesis of NiCoP nanocages doped with multiple metals for high-performance hybrid supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(10): 10553-10564.
|
31 |
ANDIKAEY Z, ENSAFI A A, REZAEI B. Iron-doped cobalt copper phosphide/phosphate composite with 3D hierarchical flower-like structures as electrodes for hybrid supercapacitors[J]. Electrochimica Acta, 2021, 393: doi: 10.1016/j.electacta.2021.139061.
|
32 |
LIU Q S, HU R, QI J Q, et al. Facile synthesis of hierarchical NiCoP nanowires@NiCoP nanosheets core-shell nanoarrays for high-performance asymmetrical supercapacitor[J]. Journal of Materials Science, 2020, 55(3): 1157-1169.
|
33 |
LIU W F, GAO H X, ZHANG Z, et al. CoP/Cu3P heterostructured nanoplates for high-rate supercapacitor electrodes[J]. Chemical Engineering Journal, 2022, 437: doi: 10.1016/j.cej.2022.135352.
|