| 1 | 
																						 
											 PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288.
											 											 | 
										
																													
																						| 2 | 
																						 
											 CHONG W G, HUANG J Q, XU Z L, et al. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers[J]. Advanced Functional Materials, 2017, 27(4): doi: 10.1002/adfm.201604815.
											 											 | 
										
																													
																						| 3 | 
																						 
											 WANG Y Z, HUANG X X, ZHANG S Q, et al. Sulfur hosts against the shuttle effect[J]. Small Methods, 2018, 2(6): doi: 10.1002/smtd.201700345.
											 											 | 
										
																													
																						| 4 | 
																						 
											 WANG L, HUA W X, WAN X, et al. Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(14): doi: 10.1002/adma.202110279.
											 											 | 
										
																													
																						| 5 | 
																						 
											 XU R, TANG H A, ZHOU Y Y, et al. Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries[J]. Chemical Science, 2022, 13(21): 6224-6232.
											 											 | 
										
																													
																						| 6 | 
																						 
											 BAEK M, SHIN H, CHAR K, et al. New high donor electrolyte for lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(52): doi: 10.1002/adma.202005022.
											 											 | 
										
																													
																						| 7 | 
																						 
											 JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
											 											 | 
										
																													
																						| 8 | 
																						 
											 PAN Y, YAN S, LIU Y Q, et al. Significantly enhanced electrochemical performance of 2D Ni-MOF by carbon quantum dot for high-performance supercapacitors[J]. Electrochimica Acta, 2022, 422: doi: 10.1016/j.electacta.2022.140560.
											 											 | 
										
																													
																						| 9 | 
																						 
											 ZHU J Y, WANG L X, GAN X M, et al. Graphene quantum dot inlaid carbon nanofibers: Revealing the edge activity for ultrahigh rate pseudocapacitive energy storage[J]. Energy Storage Materials, 2022, 47: 158-166.
											 											 | 
										
																													
																						| 10 | 
																						 
											 PARK J, MOON J, RI V, et al. Nitrogen-doped graphene quantum dots: Sulfiphilic additives for the high-performance Li-S cells[J]. ACS Applied Energy Materials, 2021, 4(4): 3518-3525.
											 											 | 
										
																													
																						| 11 | 
																						 
											 LI S, LUO Z, TU H Y, et al. N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode[J]. Energy Storage Materials, 2021, 42: 679-686.
											 											 | 
										
																													
																						| 12 | 
																						 
											 XU L Q, LI J Y, LI L, et al. Carbon dots evoked Li ion dynamics for solid state battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(39): doi: 10.1002/smll.202102978.
											 											 | 
										
																													
																						| 13 | 
																						 
											 WANG A N, HONG W W, LI L, et al. Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction[J]. Energy Storage Materials, 2022, 44: 145-155.
											 											 | 
										
																													
																						| 14 | 
																						 
											 GAO Z W, WANG Y, LIU H, et al. Tailoring the interface in FAPbI3 planar perovskite solar cells by imidazole-graphene-quantum-dots[J]. Advanced Functional Materials, 2021, 31(27): doi: 10.1002/adfm.202101438.
											 											 | 
										
																													
																						| 15 | 
																						 
											 HAN Y D, WU J, LI Y, et al. Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode[J]. Applied Catalysis B: Environmental, 2022, 304: doi: 10.1016/j.apcatb.2021.120983.
											 											 | 
										
																													
																						| 16 | 
																						 
											 CHENG R Q, JIANG M, LI K Q, et al. Dimensional engineering of carbon dots derived sulfur and nitrogen co-doped carbon as efficient oxygen reduction reaction electrocatalysts for aluminum-air batteries[J]. Chemical Engineering Journal, 2021, 425: doi: 10.1016/j.cej.2021.130603.
											 											 | 
										
																													
																						| 17 | 
																						 
											 LIN X R, YANG C Y, HAN T L, et al. A graphene oxide scaffold-encapsulated microcapsule for polysulfide-immobilized long life lithium-sulfur batteries[J]. Lab on a Chip, 2022, 22(11): 2185-2191.
											 											 | 
										
																													
																						| 18 | 
																						 
											 HAKIMI M, SANAEE Z, GHASEMI S, et al. Graphene oxide interlayered in binder-free sulfur vapor deposited cathode for lithium-sulfur battery[J]. Journal of Physics D: Applied Physics, 2022, 55(16): doi: 10.1088/1361-6463/ac4b55.
											 											 | 
										
																													
																						| 19 | 
																						 
											 HU Z J, YAN G J, ZHAO J C, et al. Covalent organic framework wrapped by graphene oxide as an efficient sulfur host for high performance lithium-sulfur batteries[J]. Nanotechnology, 2022, 33(22): doi: 10.1088/1361-6528/ac54e0.
											 											 | 
										
																													
																						| 20 | 
																						 
											 HE X Z, JI X, ZHANG B, et al. Tuning interface lithiophobicity for lithium metal solid-state batteries[J]. ACS Energy Letters, 2022, 7(1): 131-139.
											 											 | 
										
																													
																						| 21 | 
																						 
											 LI J, YANG Z F, HUANG X F, et al. Interfacial reinforcement of composites by the electrostatic self-assembly of graphene oxide and NH3 plasma-treated carbon fiber[J]. Applied Surface Science, 2022, 585: doi: 10.1016/j.apsusc.2022.152717.
											 											 | 
										
																													
																						| 22 | 
																						 
											 PALLAVOLU M R, PRABHU S, NALLAPUREDDY R R, et al. Bio-derived graphitic carbon quantum dot encapsulated S-and N-doped graphene sheets with unusual battery-type behavior for high-performance supercapacitor[J]. Carbon, 2023, 202: 93-102.
											 											 | 
										
																													
																						| 23 | 
																						 
											 ZHONG J, WANG T, WANG L, et al. A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity[J]. Nano-Micro Letters, 2022, 14(1): doi: 10.1007/s40820-022-00790-z.
											 											 | 
										
																													
																						| 24 | 
																						 
											 ZHANG J, JIA L J, LIN H Z, et al. Advances and prospects of 2D graphene-based materials/hybrids for lithium metal-sulfur full battery: From intrinsic property to catalysis modification[J]. Advanced Energy and Sustainability Research, 2022, 3(4): doi: 10.1002/aesr.202100187.
											 											 | 
										
																													
																						| 25 | 
																						 
											 ZHANG S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231: 153-162.
											 											 | 
										
																													
																						| 26 | 
																						 
											 YANG X F, LI X, ADAIR K, et al. Structural design of lithium-sulfur batteries: From fundamental research to practical application[J]. Electrochemical Energy Reviews, 2018, 1(3): 239-293.
											 											 |