1 |
张言, 王海, 刘朝孟, 等. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705.
|
|
ZHANG Y, WANG H, LIU Z M, et al. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705.
|
2 |
栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料: 研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920.
|
|
LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920.
|
3 |
QIU R Y, WU Z C. Artificial cathode-electrolyte interphases on Ni-rich LiNi0.8Co0.1Mn0.1O2 by carbon nanotubes modified LiF for enhanced cycleability[J]. Electrochemistry, 2021, 89(3): 296-302.
|
4 |
LEI T X, XUE L L, LI Y J, et al. Enhanced electrochemical performances via introducing LiF electrolyte additive for lithium ion batteries[J]. Ceramics International, 2019, 45(14): 18106-18110.
|
5 |
LIU W, OH P, LIU X E, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2015, 54(15): 4440-4457.
|
6 |
LAI Y Q, SUN Z, JIANG L X, et al. Rapid sintering of ceramic solid electrolytes LiZr2(PO4)3 and Li1.2Ca0.1Zr1.9(PO4)3 using a microwave sintering process at low temperatures[J]. Ceramics International, 2019, 45(8): 11068-11072.
|
7 |
LI G J, FENG Y, ZHU J Y, et al. Achieving a highly stable electrode/electrolyte interface for a nickel-rich cathode via an additive-containing gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36656-36667.
|
8 |
ZHANG B, SHEN J, WANG Q, et al. Boosting high-voltage and ultralong-cycling performance of single-crystal LiNi0.5Co0.2Mn0.3O2 cathode materials via three-in-one modification[J]. Energy & Environmental Materials, 2023, 6(1): e12270.
|
9 |
PAN R J, CUI Z H, YI M, et al. Ethylene carbonate-free electrolytes for stable, safer high-nickel lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(19): 2103806.
|
10 |
THAPALIYA B P, MISRA S, YANG S Z, et al. Enhancing cycling stability and capacity retention of NMC811 cathodes by reengineering interfaces via electrochemical fluorination[J]. Advanced Materials Interfaces, 2022, 9(18): 2200035.
|
11 |
TAN J, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046.
|
12 |
LI L G, WANG M C, WANG J A, et al. Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(16): 8033-8040.
|
13 |
DONG N X, WANG J E, CHEN N J, et al. In situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6250-6257.
|
14 |
ZANG G J, HE M, LIAO Y H, et al. Electrochemical improvement in high-voltage Li-ion batteries by electrospinning a small amount of nano-Al2O3 in P(MVE-MA)/P(VdF-HFP)-blended gel electrolyte[J]. Ionics, 2022, 28(2): 767-777.
|
15 |
GAO T T, WANG B, GAO J L, et al. Lithium fluoride additive for inorganic LiAlCl4 ·3SO2 electrolyte toward stable lithium metal anode[J]. Electrochimica Acta, 2020, 345: 136193.
|
16 |
HUANG J H, HONG M Y, LI G J, et al. Application of terpolymer encapsulated flame-retardant separator in Ni-rich and high-voltage lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(2): 020513.
|
17 |
TAN J A, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046.
|
18 |
LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014, 13(10): 961-969.
|
19 |
JIANG J L, OU Y H, LU S Y, et al. In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery[J]. Energy Storage Materials, 2022, 50: 810-818.
|
20 |
LI G J, LIAO Y H, LI Z F, et al. Constructing a low-impedance interface on a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode with 2, 4, 6-triphenyl boroxine as a film-forming electrolyte additive for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37013-37026.
|
21 |
SHI J L, XIA Y G, HAN S J, et al. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries[J]. Journal of Power Sources, 2015, 273: 389-395.
|