储能科学与技术 ›› 2023, Vol. 12 ›› Issue (7): 2256-2262.doi: 10.19799/j.cnki.2095-4239.2023.0294

• 储能锂离子电池系统关键技术专刊 • 上一篇    下一篇

电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究

陈钦佩1,2(), 王学辉3(), 米文忠4   

  1. 1.应急管理部天津消防研究所,天津 300381
    2.工业与公共建筑火灾防控技术应急管理部重点实验室,天津 300381
    3.中国科学技术大学火灾科学国家重点实验室,安徽 合肥 230026
    4.清华大学合肥公共安全研究院,安徽 合肥 230601
  • 收稿日期:2023-04-28 修回日期:2023-05-12 出版日期:2023-07-05 发布日期:2023-07-25
  • 通讯作者: 王学辉 E-mail:chenqinpei@tfri.com.cn;wxuehui@ustc.edu.cn
  • 作者简介:陈钦佩(1989—),男,工学博士,助理研究员,从事储能消防,E-mail:chenqinpei@tfri.com.cn
  • 基金资助:
    “十四五”国家重点研发计划项目课题“锂离子电池储能系统清洁高效经济灭火及分级应急处置技术”(2021YFB2402003);天津市自然科学基金面上项目“锂离子动力电池火灾危险性及关键防控技术研究”(22JCYBJC01690)

Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems

Qinpei CHEN1,2(), Xuehui WANG3(), Wenzhong MI4   

  1. 1.Tianjin Fire Research Institute of MEM, Tianjin 300381, China
    2.Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management of China, Tianjin 300381, China
    3.State Key Laboratory of Fire Science, University of Science of Technology of China, Hefei 230026, Anhui, China
    4.Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, Anhui, China
  • Received:2023-04-28 Revised:2023-05-12 Online:2023-07-05 Published:2023-07-25
  • Contact: Xuehui WANG E-mail:chenqinpei@tfri.com.cn;wxuehui@ustc.edu.cn

摘要:

本工作开展了全尺寸电动汽车锂离子电池系统热失控火灾气体成分及燃爆特性研究,搭建了全尺寸电动汽车火灾试验平台,设计了一种气体采集装置,利用红外傅里叶光谱分析仪、爆炸极限测试仪对毒害气体成分特征、燃爆特性进行了测量,分析了电动汽车火灾的气体释放过程,根据热失控特征将电池舱内气体释放分为四个阶段,分析了四个阶段的气体成分特征。第一阶段释放的主要为电解液蒸气;第二阶段主要为氢气;第三阶段出现了大量的二氧化硫气体,浓度达到10906.4 ppm (1 ppm=0.0001%),并分析了二氧化硫的产生机理;第四阶段驾驶舱内燃烧初期会产生氰化氢气体,最高浓度为120.4 ppm,分析驾驶舱内各种毒害气体的主要来源。测量了不同阶段电池舱内气体的爆炸极限,电池舱释放气体的爆炸极限在4.83%~73.77%。计算了各阶段的爆炸危险性,表明电池舱热失控的第二阶段爆炸危险性最大。分析了电池舱释放的混合气体爆炸特征变化规律,发现惰性气体含量主要影响混合物的爆炸下限,氢气主要影响混合物的爆炸上限。

关键词: 电动汽车, 锂离子电池, 气体成分, 气体爆炸危险性

Abstract:

In this study, the gas-composition and ignition characteristics of thermal runaway fires in full-sized electric-vehicle lithium-ion battery systems are investigated. A full-sized electric-vehicle fire-test platform is built, and a gas collection device is designed. The toxic gas composition and ignition characteristics are measured using Fourier transform infrared spectroscopy and an explosion-limit test instrument. The gas release process during an electric vehicle fire is analyzed, and the gas release in the battery compartment is divided into four stages according to the thermal runaway characteristics. The gas-composition characteristics in these four stages are analyzed. In the first stage, electrolyte vapor is primarily released, whereas in the second stage, hydrogen is mainly released. A large amount of sulfur dioxide gas is released in the third stage, with the concentration reaching 10906.4 ppm, and the mechanism of sulfur dioxide generation is analyzed. Hydrogen cyanide gas is produced in the early stages of combustion in a cockpit, with a maximum concentration of 120.4 ppm. The main sources of various toxic gases in the cockpit are analyzed. The explosion limits of the gases in the battery compartment in different stages are measured. The explosion limits of the gases released from the battery compartment range from 4.83% to 73.77%. The explosion hazards calculated for each stage indicate that the second stage of thermal runaway in the battery compartment has the highest explosion hazard. The analysis of variations in explosion characteristics of the gas mixture released from the battery compartment suggests that the inert gas content mainly affects the lower explosion limit of the mixtures, whereas hydrogen content mainly affects the upper explosion limit of the mixture.

Key words: electric vehicle, lithium-ion battery, gas composition, gas explosion risk

中图分类号: